Second Homework

Due: Tuesday, February 21

1. Solve the following systems. If the system is consistent give a parametric equation of the solution set.

(a)
$$\begin{cases} 2x - 3y = 6\\ 4x - 6y = 12 \end{cases}$$

(b)
$$\begin{cases} x + y = 0\\ 2x + 2y = 1 \end{cases}$$

(c)
$$\begin{cases} x_1 - x_2 + x_3 = 1\\ 2x_1 + x_3 = 3\\ 5x_1 - 2x_2 + 3z = 5 \end{cases}$$

(d)
$$\begin{cases} x + y + z = 9\\ 2x + 4y - 3z = 1\\ 3x + 6y - 5z = 0 \end{cases}$$

(e)
$$\begin{cases} 2x - 2y = 0\\ 2x + 3w = 2\\ 3x - 3y = 0\\ 2z + 6w = 4 \end{cases}$$

(f)
$$\begin{cases} x_1 + 2x_2 + 3x_3 = 1\\ 2x_1 - x_2 + x_3 = 2\\ x_1 - 8x_2 - 7x_3 = 1\\ x_2 + x_3 = 0 \end{cases}$$

- 2. In \mathbf{R}^4 , let $\mathbf{a} = (2, -4, 3, 5)$, $\mathbf{b} = (1, -5, 1, -2)$, $\mathbf{c} = (0, 2, 1, 2)$, $\mathbf{v} = (12, -6, 23, 54)$, and $\mathbf{u} = (3, 2, -1, 4)$. Determine whether each of \mathbf{v} , \mathbf{u} are in $\langle \mathbf{a}, \mathbf{b}, \mathbf{c} \rangle$. If yes then express the vector as a linear combination of \mathbf{a} \mathbf{b} , and \mathbf{c} .
- 3. In \mathbb{R}^3 , consider the set $B = \{(1,1,1), (1,1,0), (1,0,-1).$
 - (a) Write $\mathbf{v} = (3, 1, 5)$ as a linear combination of vectors from B.
 - (b) Show that any vector $\mathbf{b} = (b_1, b_2, b_3)$ can be written as a linear combination from vectors from B, in a *unique* way.