Second Homework

Due: Tuesday, February 21

1. Solve the following systems. If the system is consistent give a parametric equation of the solution set.
(a) $\begin{cases}2 x-3 y & =6 \\ 4 x-6 y & =12\end{cases}$
(b) $\left\{\begin{aligned} x+y & =0 \\ 2 x+2 y & =1\end{aligned}\right.$
(c) $\left\{\begin{aligned} x_{1}-x_{2}+x_{3} & =1 \\ 2 x_{1}+x_{3} & =3 \\ 5 x_{1}-2 x_{2}+3 z & =5\end{aligned}\right.$
(d) $\left\{\begin{aligned} x+y+z & =9 \\ 2 x+4 y-3 z & =1 \\ 3 x+6 y-5 z & =0\end{aligned}\right.$
(e) $\left\{\begin{aligned} 2 x-2 y & =0 \\ 3 x-3 y z+3 w & =2 \\ 2 z+6 w & =0\end{aligned}\right.$
(f) $\left\{\begin{aligned} x_{1}+2 x_{2}+3 x_{3} & =1 \\ 2 x_{1}-x_{2}+x_{3} & =2 \\ x_{1}-8 x_{2}-7 x_{3} & =1 \\ x_{2}+x_{3} & =0\end{aligned}\right.$
2. In \mathbf{R}^{4}, let $\mathbf{a}=(2,-4,3,5), \mathbf{b}=(1,-5,1,-2)$, $\mathbf{c}=(0,2,1,2)$, $\mathbf{v}=(12,-6,23,54)$, and $\mathbf{u}=(3,2,-1,4)$. Determine whether each of \mathbf{v}, \mathbf{u} are in $\langle\mathbf{a}, \mathbf{b}, \mathbf{c}\rangle$. If yes then express the vector as a linear combination of $\mathbf{a} \mathbf{b}$, and \mathbf{c}.
3. In \mathbb{R}^{3}, consider the set $B=\{(1,1,1),(1,1,0),(1,0,-1)$.
(a) Write $\mathbf{v}=(3,1,5)$ as a linear combination of vectors from B.
(b) Show that any vector $\mathbf{b}=\left(b_{1}, b_{2}, b_{3}\right)$ can be written as a linear combination from vectors from B, in a unique way.
