First Homework

Due: Thursday, February 16

1. In \mathbb{R}^{4}, let $\mathbf{a}=(-1,1,-1,1), \mathbf{b}=(0,2,0,0)$ and $c=(0,1,2,2)$
(a) Compute $3 \mathbf{a}-4 \mathbf{b}+\mathbf{c}=(-3,3,-3,3)+(0,-8,0,0)+(0,1,2,2)$

$$
=(-3,-4,-1,5)
$$

(b) Find $|\mathbf{a}|,|\mathbf{b}|$, and $|\mathbf{c}|$.

$$
\begin{aligned}
& |\vec{a}|=\sqrt{(-1)^{2}+1^{2}+(-1)^{2}+1^{2}}=\sqrt{4}=2 \\
& |\vec{b}|=\sqrt{0^{2}+2^{2}+0^{2}+0^{2}}=\sqrt{4}=2 \\
& |\vec{c}|=\sqrt{0^{2}+1^{2}+2^{2}+2^{2}}=\sqrt{9}=3
\end{aligned}
$$

$$
\begin{aligned}
& \text { (c) Find the angle between } \mathbf{a} \text { and } \mathbf{b} \text {. } \\
& \vec{a} \cdot \vec{b}=2 \text { If } \theta \text { is the angle } \\
& \text { So } \theta=\cos ^{-1} \frac{1}{2}=\frac{\pi}{3}
\end{aligned}
$$

2. In \mathbb{R}^{3}, find the equation of a plane that passes through the origin, and is parallel to both vectors $3 \mathbf{i}-\mathbf{j}+2 \mathbf{k}$ and $\mathbf{i}+3 \mathbf{j}-2 \mathbf{k}:=\vec{b}$

The plane will be orthogonal to $\vec{a} \times \vec{b}$.

$$
\begin{aligned}
\vec{a} \times \vec{b} & =\left|\begin{array}{ccc}
\vec{i} & \vec{j} & \vec{k} \\
3 & -1 & 2 \\
1 & 3 & -2
\end{array}\right| \\
& =\left|\begin{array}{cc}
-1 & 2 \\
3 & -2
\end{array}\right| \vec{i}-\left|\begin{array}{cc}
3 & 2 \\
1 & -2
\end{array}\right| \vec{j}+\left|\begin{array}{cc}
3 & -1 \\
1 & 3
\end{array}\right| \vec{k} \\
& =(2-6) \vec{i}-(-6-2) \vec{j}+(9+1) \vec{k} \\
& =-4 \vec{i}+8 j+10 \vec{k}
\end{aligned}
$$

Let $\vec{x}=(x, y, z)$, be on the plane. Then $\vec{x} \cdot(\vec{a} \times \vec{b})=0 \Leftrightarrow-4 x+8 y+10 z=0$
3. Use the method or row operations to calulate the following determinant:

$$
\begin{aligned}
& \left|\begin{array}{cccc}
0 & 8 & 3 & -4 \\
-1 & 2 & -2 & 5 \\
-2 & 8 & 4 & 3 \\
0 & -4 & 2 & -3
\end{array}\right|=-\left|\begin{array}{cccc}
-1 & 2 & -2 & 5 \\
0 & 8 & 3 & -4 \\
-2 & 8 & 4 & 3 \\
0 & -4 & 2 & -3
\end{array}\right| \times-2 \\
& =-\left|\begin{array}{cccc}
-1 & 2 & -2 & 5 \\
0 & 8 & 3 & -4 \\
0 & 4 & 8 & -7 \\
0 & -4 & 2 & -3
\end{array}\right| \\
& =\left|\begin{array}{cccc}
-1 & 2 & -2 & 5 \\
0 & 4 & 8 & -7 \\
0 & 8 & 3 & -4 \\
0 & -4 & 2 & -3
\end{array}\right| x-2 \times 1 \\
& =\left|\begin{array}{cccc}
-1 & 2 & -2 & 5 \\
0 & 4 & 8 & -7 \\
0 & 0 & -13 & 10 \\
0 & 0 & 10 & -10
\end{array}\right| \times 13 \\
& =\frac{1}{13}\left|\begin{array}{cccc}
1 & 2 & -2 & 5 \\
0 & 4 & 8 & -7 \\
0 & 0 & -13 & 10 \\
0 & 0 & 130 & -130
\end{array}\right| \times 10 \\
& =\frac{1}{13}\left|\begin{array}{cccc}
1 & 2 & -2 & 5 \\
0 & 4 & 8 & -7 \\
0 & 0 & -13 & 10 \\
0 & 0 & 0 & -30
\end{array}\right| \\
& =\frac{1}{13} \cdot 4 \cdot(-13) \cdot(-30) \\
& =-120
\end{aligned}
$$

4. What is the area of the paralellogram whose sides are the vectors $\mathbf{a}=2 \mathbf{i}+6 \mathbf{j}$, and $\mathbf{b}=\mathbf{i}+3 \mathbf{j}$?
$A=\left|\begin{array}{ll}2 & 6 \\ 1 & 3\end{array}\right|=6-6=0$
5. What is the volume of the parallepiped whose sides are the vectors $\mathbf{a}=3 \mathbf{i}-\mathbf{j}+\mathbf{k}, \mathbf{b}=2 \mathbf{i}+5 \mathbf{j}+\mathbf{k}$, and $\mathbf{c}=2 \mathbf{i}+6 \mathbf{k}$?

$$
\begin{aligned}
& \left|\begin{array}{ccc}
3 & -1 & 1 \\
2 & 5 & 1 \\
2 & 0 & 6
\end{array}\right| \zeta=-\left|\begin{array}{ccc}
2 & 5 & 1 \\
3 & -1 & 1 \\
2 & 0 & 6
\end{array}\right| \times 2 \\
& =-\frac{1}{3}\left|\begin{array}{ccc}
2 & 5 & 1 \\
6 & -2 & 2 \\
2 & 0 & 6
\end{array}\right| \\
& =-\frac{1}{2}\left|\begin{array}{ccc}
2 & 5 & 1 \\
0 & -17 & -1 \\
0 & -5 & 5
\end{array}\right|_{x-1} \\
& =\frac{1}{2}\left|\begin{array}{ccc}
2 & 5 & 1 \\
0 & 17 & 1 \\
0 & -5 & 5
\end{array}\right|_{\times 17} \\
& =\frac{1}{34}\left|\begin{array}{ccc}
2 & 5 & 1 \\
0 & 17 & 1 \\
0 & -85 & 85
\end{array}\right| \times 5 \\
& =\frac{1}{34}\left|\begin{array}{ccc}
2 & 5 & 1 \\
0 & 17 & 1 \\
0 & 0 & 90
\end{array}\right| \\
& =\frac{1}{34} \cdot 2 \cdot 17 \cdot 90 \\
& =90
\end{aligned}
$$

