BRONX COMMUNITY COLLEGE of the City University of New York

DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE

MATH 35
Nikos Apostolakis

Take Home Part of Final
May 28, 2017

Directions: Write your answers in a separate piece of paper. Please staple all sheets together. To get full credit you must show all your work. Simplify your answers whenever possible. Be certain to indicate your final answer clearly.

1. Consider the following matrix:

$$
A=\left(\begin{array}{ccc}
1 & -2 & 3 \\
-1 & 1 & -2 \\
2 & -1 & -1
\end{array}\right)
$$

(a) Find the inverse matrix A^{-1}.
(b) Use the inverse matrix to solve the system;

$$
\left\{\begin{aligned}
x-2 y+3 z & =1 \\
-x+y-2 z & =-2 \\
2 x-y-z & =-1
\end{aligned}\right.
$$

2. Use row operations to find the determinant of the following matrix:

$$
\left(\begin{array}{cccc}
3 & 4 & 5 & 6 \\
1 & 2 & 3 & 8 \\
0 & 1 & 2 & 1 \\
10 & 20 & 30 & 40
\end{array}\right)
$$

3. Consider the matrix:

$$
A=\left(\begin{array}{cccc}
2 & 9 & 4 & 6 \\
5 & 22 & 9 & 14 \\
1 & 4 & 1 & 2
\end{array}\right)
$$

(a) Compute the rank and nullity of A.
(b) Give a basis for the range and the null space of A.
(c) Use these calculations to describe the solution set of each of the systems:

$$
\left\{\begin{array} { r l }
{ 2 x + 9 y + 4 z + 6 w } & { = 1 0 } \\
{ 5 x + 2 2 y + 9 z + 1 4 w } & { = 2 8 } \\
{ x + 4 y + z + 2 w } & { = 4 }
\end{array} \quad \left\{\begin{array}{rl}
2 x+9 y+4 z+6 w & =10 \\
5 x+22 y+9 z+14 w & =24 \\
x+4 y+z+2 w & =4
\end{array}\right.\right.
$$

4. Consider the 2×2 matrix

$$
A=\left(\begin{array}{cc}
3 & 4 \\
-1 & -2
\end{array}\right)
$$

(a) Find the eigenvalues and the corresponding eigenvectors of A.
(b) Use the result of part (a) to solve the system of linear differential equations:

$$
\left\{\begin{array}{l}
y_{1}^{\prime}=3 y_{1}+4 y_{2} \\
y_{2}^{\prime}=-y_{1}-2 y_{2}
\end{array}\right.
$$

subject to the initial conditions $y_{1}(0)=1, y_{2}(0)=2$.
5. Let $f: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be a given mapping and write

$$
f(x, y, z)=(u(x, y, z), v(x, y, z), w(x, y, z))
$$

. Let $g: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be defined by $g(u, v, w)=(u-v, u+w, w+v)$ and let $h=g \circ f$.
(a) Write a formula for the derivative matrix $\mathbf{D} h$.
(b) Show that $\mathbf{D} h$ cannot have rank 3 at any point (x, y, z).
(c) Show that $\mathbf{D} h$ has an eigenvalue zero at every (x, y, z).
6. Use Lagrange multipliers to find the maximum and minimum values of
(a) $f(x, y, z)=x^{4}+y^{4}+z^{4}$ subject to the constraint $x^{2}+y^{2}+z^{2}=1$
(b) $f(x, y, z)=x^{2}+y^{2}+z^{2}$ subject to the constraint $4 x^{2}+2 y^{2}+z^{2}=4$
(c) $f(x, y, z)=x$ subject to the constraints $x^{2}+y^{2}+z^{2}=1$ and $x+y+z=1$
7. Suppose that x and y are functions of a and b, given by

$$
x=a+b^{2}, \quad y=a b+2 b^{3} .
$$

(a) Use the Inverse Function Theorem to decide near which points (a, b) can we solve for a and b in terms of x and y.
(b) Show that we can't solve for a and b in terms of x and y near $(a, b)=(-4,-1)$.
(c) Show that we can solve near $(a, b)=(1,1)$, and compute

$$
\frac{\partial(a, b)}{\partial(x, y)}
$$

at the point $(x, y)=(2,3)$
8. Let S be the part of the cone $z^{2}=x^{2}+y^{2}$ lying above the unit square $0 \leq x, y \leq 1$. Find the surface area of S.
9. Let $\mathbf{G}(x, y)=\left(x e^{x^{2}+y^{2}}+2 x y\right) \mathbf{i}+\left(y e^{x^{2}+y^{2}}+x^{2}\right) \mathbf{j}$
(a) Show that $\mathbf{G}=\nabla f$ for some f; find such an f
(b) Use part (a) to show that the line integral of \mathbf{G} around the edges of the triangle with vertices $(0,0),(0,1),(1,0)$ is zero.
(c) State Greens theorem for the triangle part (b) and a vector field \mathbf{F} and verify it for the vector field \mathbf{G} above
10. Let W be the three dimensional region under the graph of $f(x, y)=e^{x^{2}+y^{2}}$ and over the region in the plane defined by $1 \leq x^{2}+y^{2} \leq 2$.
(a) Find the volume of W.
(b) Find the flux of the vector field $\mathbf{F}=(2 x-x y) \mathbf{i}-y \mathbf{j}+y z \mathbf{k}$ out of the region W.
11. Let C be the curve $x^{2}+y^{2}=1$ lying in the plane $z=1$. Let $\mathbf{F}=(z-y) \mathbf{i}+y \mathbf{k}$.
(a) Calculate $\nabla \times \mathbf{F}$.
(b) Calculate $\int_{C} \mathbf{F} \cdot d \mathbf{s}$ using a parametrization of C and a chosen orientation for C.
(c) Write $C=\partial S$ for a suitably chosen surface S and, applying Stokes theorem, verify your answer in b
(d) Consider the sphere with radius $\sqrt{2}$ and center the origin. Let S^{\prime} be the part of the sphere that is above the curve (i.e., lies in the region $z \geq 1$), and has C as boundary. Evaluate the surface integral of $\nabla \times \mathbf{F}$ over S^{\prime}. Specify the orientation you are using for S^{\prime}.
12. Let $\mathbf{F}(x, y, z)=y z \mathbf{i}+x z \mathbf{j}+x y \mathbf{k}$.
(a) Prove that \mathbf{F} is a conservative vector field.
(b) Let γ be the path $t \rightarrow\left(\sqrt{1+t^{2}}+\sqrt[3]{1+t^{3}}+\sqrt[4]{1+t^{4}}\right)$, defined for $0 \leq t \leq 1$. Evaluate

$$
\int_{\gamma} \mathbf{F} \cdot d \mathbf{s}
$$

13. Consider the region D bound by the curves $y=x^{2}-6$ and $y=2-2 x$. Let C by the boundary curve of D oriented counter clockwise. Verify Green's theorem for the integral

$$
\int_{C}-y d x+x d y
$$

14. Let C be the intersection of the surfaces $z=2 x$ and $x^{2}+y^{2}=4$, oriented counterclockwise as seen from above. Verify Stoke's theorem for the following integral

$$
\int_{C}(1-4 z) d x+2 x d y+(1-5 y) d z
$$

15. Let R be the part of the solid ball $x^{2}+y^{2}+z^{2}=4$ that lies above the plane $z=-1$, and let $\mathbf{F}(x, y, z)=x \mathbf{i}+y \mathbf{j}+z \mathbf{k}$. Consider the boundary of the surface to be oriented by the outward pointing normal vector. Verify Gauss' theorem for the integral

$$
\int_{R} \mathbf{F} \cdot d \mathbf{S}
$$

