BRONX COMMUNITY COLLEGE of the City University of New York

DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE

MATH 35

Nikos Apostolakis

Exam 1
April 9, 2017

Directions: Write your answers in a separate piece of paper. Please staple all sheets together. To get full credit you must show all your work. Simplify your answers whenever possible. Be certain to indicate your final answer clearly.

1. Consider the 2×2 matrix

$$
A=\left(\begin{array}{ll}
2 & 2 \\
1 & 3
\end{array}\right)
$$

(a) Find the eigenvalues and the corresponding eigenvectors of A.
(b) Use the result of part a to solve the system of linear differential equations:

$$
\left\{\begin{array}{l}
y_{1}^{\prime}=2 y_{1}+2 y_{2} \\
y_{2}^{\prime}=y_{1}+3 y_{2}
\end{array}\right.
$$

subject to the initial conditions $y_{1}^{\prime}(0)=2, y_{2}^{\prime}(0)=1$.
2. Let $f: \mathbb{R}^{3} \rightarrow \mathbb{R}$ be given by $F(x, y, z)=x$. Find the maximum and minimum of f subject to the constrains

$$
x^{2}+y^{2}+z^{2}=1 \quad \text { and } \quad x+y+z=1
$$

3. Show that $x^{3} z^{2}-z^{3} y x=0$ can be solved for z near $(1,1,1)$ but not near the origin. Compute $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$ at $(1,1)$.
4. Show that

$$
\mathbf{c}(t)=\left(\frac{1}{1-t}, 0, \frac{e^{t}}{1-t}\right)
$$

is a flow line of the vector field $\mathbf{F}(x, y, z)=\left(x^{2}, 0, z(1-x)\right)$.
5. Find and graph the integral curve through the point $(1,0)$ for each of the following vector fields.
(a) $\mathbf{F}(x, y)=(4 x+2, x+3 y)$
(b) $\mathbf{F}(x, y)=(-x+2 y,-x-y)$
(c) $\mathbf{F}(x, y)=(x-5 y, x-y)$
(d) $\mathbf{F}(x, y)=(-2 x-y, x-4 y)$
6. Show that $\mathbf{F}(x, y)=\left(x^{2}+x^{2}\right) \mathbf{i}-2 x y \mathbf{j}$ is not a gradient vector field.
7. Sketch or describe the region of integration for

$$
\int_{0}^{1} \int_{0}^{x} \int_{0}^{y} f(x, y, z) d z d y d x
$$

and interchanges the order to $d y d x d z$.
8. Evaluate

$$
\iiint_{D} e^{\left(x^{2}+y^{2}+z^{2}\right)^{3 / 2}} d x d y d z
$$

where D is the region defined by $1 \leq x^{2}+y^{2}+z^{2} \leq 2$ and $z \geq 0$.

