BRONX COMMUNITY COLLEGE of the City University of New York
 DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE

MATH 35
Nikos Apostolakis

Exam 1
March 9, 2017

Name: \qquad

Directions: Write your answers in the provided booklets. To get full credit you must show all your work. Simplify your answers whenever possible. Be certain to indicate your final answer clearly.

1. Find an equation for the plane in R^{3} that is spanned by the vectors $\mathbf{a}=2 \mathbf{i}-3 \mathbf{j}+\mathbf{k}$ and $\mathbf{b}=\mathbf{j}-5 \mathbf{k}$
2. In \mathbb{R}^{3}, let $S=\{(-1,2,1),(3,1,2),(1,5,4)\}$.
(a) Find a basis for $\langle S\rangle$.
(b) Let $\mathbf{w}=(-6,5,1)$, and $\mathbf{v}=(1,1,1)$. For each of these vectors determine whether it is in $\langle S\rangle$. If it is then write the vector as a linear combination of elements of S.
3. In \mathbb{R}^{3} consider the vectors $\mathbf{u}=(-1,3,-5), \mathbf{v}=(2,-5,9)$, and $\mathbf{w}=(3,1,-2)$.
(a) Prove that the set $B=\{\mathbf{u}, \mathbf{v}, \mathbf{w}\}$ forms a basis of \mathbb{R}^{3}.
(b) Find the coordinates of the vector $\mathbf{a}=(-7,14,-21)$ with respect to the basis B. In other words, express the vector a as a linear combination of elements of B.
(c) Find the volume of the parallepiped generated by these three vectors.
4. Let $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{4}$ be defined by

$$
T(\mathbf{v})=(2 x+5 y+3 z,-3 x+2 y+5 z, x-3 y-4 z, 4 x-4 z)
$$

where $\mathbf{v}=(x, y, z) \in \mathbb{R}^{3}$.
(a) Find $[T]$ the matrix of T.
(b) Prove that T is neither injective nor surjective.
(c) Find a basis for each of the subspaces $\operatorname{im} S$ and $\operatorname{ker} S$.
5. Let

$$
A=\left(\begin{array}{cccc}
1 & -2 & 3 & -4 \\
4 & -7 & 14 & -19 \\
3 & -6 & 10 & 8 \\
2 & -4 & 6 & -9
\end{array}\right)
$$

(a) Find A^{-1}.
(b) Use the answer in Part (a) to solve the system:

$$
\left\{\begin{aligned}
x-2 y+3 z-4 w & =0 \\
4 x-7 y+14 z-19 w & =4 \\
3 x-6 y+10 z+8 w & =5 \\
2 x-4 y+6 z-9 w & =0
\end{aligned}\right.
$$

6. Consider the following linear transformations: $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ given by

$$
T(x, y)=(2 x-y, 3 x+2 y,-x+y)
$$

, and $S: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ given by

$$
S(x, y, z)=(x+y+z,-3 x+2 y+4 z)
$$

(a) Find the matrices $[T]$ and $[S]$.
(b) Find the products $[S][T]$, and $[T][S]$
(c) Use the answer to Part (b) to write down a formula for the transformations $S \circ T$ and $T \circ S$.
(d) Find the rank and the nullity of $S \circ T$ and $T \circ S$.
7. Extra Credit: Find the eigenvalues and bases for the corresponding eigenspaces for the following 2×2 matrix

$$
A=\left(\begin{array}{cc}
-2 & 4 \\
4 & 4
\end{array}\right)
$$

