BRONX COMMUNITY COLLEGE of the City University of New York

DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE

MATH 35 Nikos Apostolakis Exam 1 March 9, 2017

Name: ____

Directions: Write your answers in the provided booklets. To get full credit you *must* show all your work. Simplify your answers whenever possible. Be certain to indicate your final answer clearly.

- 1. Find an equation for the plane in R^3 that is spanned by the vectors $\mathbf{a} = 2\mathbf{i} 3\mathbf{j} + \mathbf{k}$ and $\mathbf{b} = \mathbf{j} 5\mathbf{k}$
- 2. In \mathbb{R}^3 , let $S = \{(-1, 2, 1), (3, 1, 2), (1, 5, 4)\}.$
 - (a) Find a basis for $\langle S \rangle$.
 - (b) Let $\mathbf{w} = (-6, 5, 1)$, and $\mathbf{v} = (1, 1, 1)$. For each of these vectors determine whether it is in $\langle S \rangle$. If it is then write the vector as a linear combination of elements of S.
- 3. In \mathbb{R}^3 consider the vectors $\mathbf{u} = (-1, 3, -5)$, $\mathbf{v} = (2, -5, 9)$, and $\mathbf{w} = (3, 1, -2)$.
 - (a) Prove that the set $B = {\mathbf{u}, \mathbf{v}, \mathbf{w}}$ forms a basis of \mathbb{R}^3 .
 - (b) Find the coordinates of the vector $\mathbf{a} = (-7, 14, -21)$ with respect to the basis *B*. In other words, express the vector \mathbf{a} as a linear combination of elements of *B*.
 - (c) Find the volume of the parallepiped generated by these three vectors.
- 4. Let $T: \mathbb{R}^3 \to \mathbb{R}^4$ be defined by

$$T(\mathbf{v}) = (2x + 5y + 3z, -3x + 2y + 5z, x - 3y - 4z, 4x - 4z)$$

where $\mathbf{v} = (x, y, z) \in \mathbb{R}^3$.

- (a) Find [T] the matrix of T.
- (b) Prove that T is neither injective nor surjective.
- (c) Find a basis for each of the subspaces im S and ker S.

5. Let \mathbf{Let}

$$A = \begin{pmatrix} 1 & -2 & 3 & -4 \\ 4 & -7 & 14 & -19 \\ 3 & -6 & 10 & 8 \\ 2 & -4 & 6 & -9 \end{pmatrix}$$

- (a) Find A^{-1} .
- (b) Use the answer in Part (a) to solve the system:

$$\begin{cases} x - 2y + 3z - 4w = 0\\ 4x - 7y + 14z - 19w = 4\\ 3x - 6y + 10z + 8w = 5\\ 2x - 4y + 6z - 9w = 0 \end{cases}$$

6. Consider the following linear transformations: $T: \mathbb{R}^2 \to \mathbb{R}^3$ given by

$$T(x,y) = (2x - y, 3x + 2y, -x + y)$$

, and $S: \mathbb{R}^3 \to \mathbb{R}^2$ given by

$$S(x, y, z) = (x + y + z, -3x + 2y + 4z)$$

- (a) Find the matrices [T] and [S].
- (b) Find the products [S][T], and [T][S]
- (c) Use the answer to Part (b) to write down a formula for the transformations $S \circ T$ and $T \circ S$.
- (d) Find the rank and the nullity of $S \circ T$ and $T \circ S$.
- 7. Extra Credit: Find the eigenvalues and bases for the corresponding eigenspaces for the following 2×2 matrix

$$A = \begin{pmatrix} -2 & 4\\ 4 & 4 \end{pmatrix}$$