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NIKOS APOSTOLAKIS

1. ISOMORPHISMS, INVERTIBLE MATRICES, AND DETERMINANTS AGAIN

Recall that a linear transformation is called an isomorphism if it is both
injective and surjective. Let T: R™ — R" be an isomorphism. Then observe
first that since ker T = {0} the RREF of [T] doesn’t have any non-pivot
columns so all n columns of [T] are pivot. On the other hand, we know that
the pivot columns form a basis of the range of T', so im 1" has dimension n.
But since T is surjective, im T = R™. It follows that m = n. So:

Proposition 1. If T: R™ — R™ is an isomorphism, then m = n. In
particular the matriz of an isomorphism is always a square matriz.

An isomorphism has many properties. We list here a few equivalent defi-
nitions:

Proposition 2. The following are equivalent for a map T': R — R"
(1) T is an isomorphism.
(2) T is full-rank, i.e. r(T) = n.
(3) T has trivial kernel, i.e. ker T = {0}.
(4) The system T'(x) = b has a unique solution for each vector b € R™.
(5) The RREF of [T] is the n x n identity matriz I,,.
(6) T is invertible, i.e. there is an inverse linear transformation
T—1: R — R™ with the property:
ToT'=T"'oT =1,

where I, stands for the identity transformation x — X.
(7) [T] the matriz of T is invertible, i.e. there is an n x n matriz [T~
with the property that
[T~ = [T = L
where now I,, stands for the n X n identity matriz.
(8) The matriz [T] is non-singular, i.e.
det[T] # 0

1

Sketch of proof: A By the rank-nullity theorem the first three assertions are
equivalent. The fourth is just a restatement of what it means to be both
injective and surjective. The fifth just translates the second and third in
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terms of the RREF of T': indeed every column has to be pivot, so it will be
one of the standard basic vectors, furthermore by the definition of RREF
the k-th column has to be the eg.

The sixth and seventh are also equivalent since we know that the matrix
of a composition of linear transformations is the product of the matrices of
the linear transformations.

The fourth statement implies the sixth. Indeed, for a b € R"™ define
T~1(b) to be the unique solution of the system 7'(x) = b. Then by definition
T(T~ (b)) = b. To see that T~!(T(x)) = x notice that T~ (T(x)) is the
unique solution to the system 7'(x) = T'(x). One can also check that 71
defined this way is linear: T~!(Aa+ ub) is the unique solution to the system
T(x) = A\a = pb. Since T is linear NXT~*(a) + uT~1(b) is such a solution.

Similarly the sixth statement implies the fourth.

Finally by the method we have for computing determinants via row oper-
ations we can see that the fifth and eight statements are equivalent. O

Proposition 3. We have:

o If A is invertible then A~ is also invertible and
(™) = 4

e If A and B are invertible n x n matrices, their product AB is also
invertible. Indeed

(AB)™' =B7ta™!
Today we will concentrate on how we find the inverse of a matrix (or a

linear transformation) when it exists.

Finding the inverse using row operations. If A is invertible then its
RREF is the identity matrix. We will use the following fact:

Proposition 4. Let A be an invertible matriz. Then the row operations that
transform A to the identity matriz, transform the identity matricz to A=1.

So to find the inverse matrix of A then we construct an “augmented”
matrix [A|l,], by concatenating A and the identity matrix. Then we con-
centrate on the left part A and use row operations to transform it to I,,.
When finished the right part has been transformed to A~L.

Example 5. Use row operations to find the inverse of

()

Answer. We start with the augmented matrix:

1 271 0
3 410 1
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We multiply the first row by —3 and add it to the second:
1 211 0
0 -2 -3 1

Then add the second row to the first:
1 0 |-2
0 —2|-3

finally we divide the second row by —2;

So

We can verify:

L9 - (3 Wi y)-( )

As an exercise, verify that the other multiplication also gives the identity,
i.e. that
<—2 1 ) <1 2> (1 0)
3 1 =
5 —3/)\3 4 01

Example 6. Find the inverse of the matrix:

12 3
A=12 0 -1
31 0

Answer. We start with the augmented matrix:

12 3|1 00
20 -1/0 10
31 0j]0 01

We add —2 times the first row to the second and —3 times the first row to
the third:

12 3| 100
0 4 -7/-2 10
0 -5 -9{-3 01

Next we multiply the first row with 2 and the third with —4:
2 4 6] 2 0 O
0 -4 -71-2 1 0
0 20 36| 12 0 —4
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Next we add the second row to the first and 5 times the second row to the

third
2 0 -1 0 1 0

0O 4 —-7/-21 0

0O o0 1| 2 5 —4
Next we add 7 times the third row to the second, and add the third column
to the first:

2 00| 2 6 -4
0 —4 0]12 36 -—28
0O 0 1} 2 5 —4
Finally we divide the first row by 2 and the second by —4:
10 01 3 -2
01 0|3 9 —7
00 1|2 5 —4
So
1 3 -2
At=(3 9 -7
2 5 —4

O

1.1. A formula using determinants. If A = (a;;) is an n x n matrix then
we denote by A;; the (n — 1) x (n — 1)matrix obtained from A by deleting
the i-th row and the j-th column (these are the same matrices we saw in the
inductive definition of the determinant).

Proposition 7. The (i,7)-entry of the inverse matriz is given by the for-
mula:

1
-1
(A ) det A

Notice that the indices ¢ and j have been interchanged in the RHS of the
formula. That’s not a typo, it works that way.

— (1)t

det Aji

Example 8. Find the inverse of the matrix:

4-(% )
Answer. The determinant is
det A=3-5—4(-2)=23
The minors are just 1 x 1 matrices.

A =5 App=-2

Cexl ) -G 7

So,
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Example 9. Find the inverse of the matrix

1 -1 2
A= 3 2 4
-2 -3 6

Answer. We can calculate:

det A;1 =24 det Ajo =26 det Aj3=—5
det As;1 =0 det Ao =10 det Ay3 = —5
det Azg1 = —8 det Azo = —2 det Az3 =5

So we can calculate the determinant:
det A =1(24) — (—1)(26) + (2)(—5) =40

So, we have:

24 0 -8 30 1%

1 5 5

-1 _ _ 13 1 1
o 8 8 8

Solving systems using inverse matrices. Consider the system
Ax=Db
where A is a non-singular matrix. Since A has an inverse A~! we can write:
Ax =b <= A '(4x) = A"'b

— (A" Ax=A4""b

— Ix=A"b

— Ix=A"b
So:

Proposition 10. If A is a non-singular n X n matriz, then the solution of
the system

Ax=Db
s given by
z=A"b
Example 11. Solve the system:
r+2y+32z = 2
2z -z =-2
3z + y = 5
Answer. Notice that this system
Ax=Db

where the matrix A is the same as in Example [0, and b = (2, -2, 5).
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In Example [6 we found A~!. So the solution is
x=A"'b
1 3 -2 2
=13 9 -7 -2
2 5 —4 5
—14
= | —47
—26
O

Change of basis. In applications, often isomorphisms appear as changes
of basis.

Proposition 12. Let T: R™ — R" be an isomorphism, and S C R™. By
T(S) we mean the set of all the images of the vectors in S, in other words
T(S)={T(v):veS}

(1) S is linearly independent if and only if T(S) is linearly independent.
(2) S is a basis if and only if T(S) is a basis.
Proposition 13. If By = {vy,...,v,} and By = {u,,...,u,} are two bases
of R™, then there is a unique isomorphism Tp, p,: R™ — R" defined by
T(v;)) =u;, i=1,...,n
This isomorphism is called the change of basis from By to Bs.
Recall that the coordinates of a vector v with respect to a basis B are
the coefficients of the expression of v as a linear combination of the vectors

from B. For example if B = {i+ j,—j} the coordinates of v = 3i 4 4j with
respect to B are (3,7).

Proposition 14. If (x1,...,x,) are the coordinates of a vector v with respect
to the basis By then the coordinates of v with respect to the basis Bo are given
by the multiplication.:

z1

[TBl,Bz]_l

Tn

Example 15. Let By = {i+ 2j,3i+j}. What are the coordinates of v =
51 — 6j with respect to the basis Bs?

Answer. The change of basis from B, the standard basis of R? to By has

matrix
1 3
[TB17B2] = <2 1>

_ 1/-1 3
(Ts,,8,] b= 5 < 2 _1>

We calculate:
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So the coordinates of v in the new basis are:

) (E)-C)- ()

We can verify this:

23

6
—% — (3i+]j) = 5i - 6j

s
i+ J)+5(
O

Example 16. Find the coordinates of v = (—3,5,1) with respect to the
basis B = {i+j+k,j+k,k} or R®.

Answer. The matrix of the change of basis from the standard basis is

100
M=|1 10
111
We calculate:
1 0 0
M*t=[-1 1 0
0 -1 1
So the coordinates of v with respect to B are
1 0 0 -3 -3
-1 1 0 5 | =1 8
0 -1 1 1 —4

Properties of determinants.

Proposition 17. We have:
) det(AB) = det(A) det(B)

(1
(2) T detA

(3) det(AA) = Adet A
(4) detO =0
()

Project: Row Operations via matrix multiplication. In this project
we will see that row operations can be effected by multiplying a given ma-
trix A with special kind of matrices called elementary reduction matrices or
simply elementary matrices. There are three kinds of elementary matrices,
and they are all result by performing a row operation to the identity matrix.
Scalar Matrices: A scalar matriz is obtained by multiplying one of the
rows of the identity matrix by a scalar. More specifically given A € R, and ¢
with 1 < i < n we have the n x n matrix M;(\), whose off diagonal entries
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are 0, and all diagonal entries are 1 except the i-th which is A. For example,
for n = 3 we have:

1

My(5)= 1|0

0 0

Transposition Matrices: A transposition matriz is obtained by inter-

changing two rows of the identity matrix. We denote by 7;; the matrix

obtained by interchanging the i-th and j-th rows of the identity matrix. For
example for n = 4, 154 is the following matrix:

0
0
1

1000
ot = 0 001
0 010
0100

Combining Matrices: A combining matriz is obtained by adding a scalar
multiple of one row of I,, to an other row. More specifically Cj;(A) is the
matrix obtained by adding A times the i-th row of I, to the j-th row. For
example for n = 3, C51(—3) is the following matrix:

1 0 -3
C31(=3)=10 1 0
00 1
(1) Prove that all elementary matrices are non-singular. In particular

prove that
det MZ(/\) = /\, det Tij = —1, det Cw()\) =1

(2) Prove that multiplying an n x m matrix A on the left by M;(\), has
the same effect as multiplying the i-th row of A by .

(3) Prove that multiplying an n x m matrix A on the left by 7;; has the
same effect as interchanging the i-th and j-th rows of A.

(4) Prove that multiplying an n x m matrix A on the left by C;;(\) has
the same effect as adding A times the i-th row of A to the j-th row.

(5) Prove that

M) =M, 1t =m0 Gy =GN

(6) Use the above to explain why the method of finding the inverse of a
matrix using row operations works.

(7) Use the above to explain why the method of calculating the deter-
minant using row operations works.

(8) What happens when we multiply an m x n matrix by an elementary
matrix on the right?
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