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NIKOS APOSTOLAKIS

1. Isomorphisms, invertible matrices, and determinants again

Recall that a linear transformation is called an isomorphism if it is both
injective and surjective. Let T : R

n → R
m be an isomorphism. Then observe

first that since ker T = {0} the RREF of [T ] doesn’t have any non-pivot
columns so all n columns of [T ] are pivot. On the other hand, we know that
the pivot columns form a basis of the range of T , so imT has dimension n.
But since T is surjective, im T = R

m. It follows that m = n. So:

Proposition 1. If T : Rn → Rm is an isomorphism, then m = n. In

particular the matrix of an isomorphism is always a square matrix.

An isomorphism has many properties. We list here a few equivalent defi-
nitions:

Proposition 2. The following are equivalent for a map T : R
n → R

n

(1) T is an isomorphism.

(2) T is full-rank, i.e. r(T ) = n.

(3) T has trivial kernel, i.e. ker T = {0}.
(4) The system T (x) = b has a unique solution for each vector b ∈ R

n.

(5) The RREF of [T ] is the n× n identity matrix In.

(6) T is invertible, i.e. there is an inverse linear transformation

T−1 : R
n → R

n with the property:

T ◦ T−1 = T−1 ◦ T = In

where In stands for the identity transformation x 7→ x.

(7) [T ] the matrix of T is invertible, i.e. there is an n× n matrix [T ]−1

with the property that

[T ][T ]−1 = [T ]−1[T ] = In

where now In stands for the n× n identity matrix.

(8) The matrix [T ] is non-singular, i.e.

det[T ] 6= 0

Sketch of proof: 1 By the rank-nullity theorem the first three assertions are
equivalent. The fourth is just a restatement of what it means to be both
injective and surjective. The fifth just translates the second and third in

Date: March 2, 2017.
1Fill in the details of this sketch!

1



2 NIKOS APOSTOLAKIS

terms of the RREF of T : indeed every column has to be pivot, so it will be
one of the standard basic vectors, furthermore by the definition of RREF
the k-th column has to be the ek.

The sixth and seventh are also equivalent since we know that the matrix
of a composition of linear transformations is the product of the matrices of
the linear transformations.

The fourth statement implies the sixth. Indeed, for a b ∈ Rn define
T−1(b) to be the unique solution of the system T (x) = b. Then by definition
T (T−1(b)) = b. To see that T−1(T (x)) = x notice that T−1(T (x)) is the
unique solution to the system T (x) = T (x). One can also check that T−1

defined this way is linear: T−1(λa+µb) is the unique solution to the system
T (x) = λa = µb. Since T is linear λT−1(a) + µT−1(b) is such a solution.

Similarly the sixth statement implies the fourth.
Finally by the method we have for computing determinants via row oper-

ations we can see that the fifth and eight statements are equivalent. �

Proposition 3. We have:

• If A is invertible then A−1 is also invertible and

(

A−1
)

−1
= A

• If A and B are invertible n × n matrices, their product AB is also

invertible. Indeed

(AB)−1 = B−1A−1

Today we will concentrate on how we find the inverse of a matrix (or a
linear transformation) when it exists.

Finding the inverse using row operations. If A is invertible then its
RREF is the identity matrix. We will use the following fact:

Proposition 4. Let A be an invertible matrix. Then the row operations that

transform A to the identity matrix, transform the identity matrix to A−1.

So to find the inverse matrix of A then we construct an “augmented”
matrix [A|In], by concatenating A and the identity matrix. Then we con-
centrate on the left part A and use row operations to transform it to In.
When finished the right part has been transformed to A−1.

Example 5. Use row operations to find the inverse of

A =

(

1 2
3 4

)

Answer. We start with the augmented matrix:
(

1 2 1 0
3 4 0 1

)
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We multiply the first row by −3 and add it to the second:
(

1 2 1 0
0 −2 −3 1

)

Then add the second row to the first:
(

1 0 −2 1
0 −2 −3 1

)

finally we divide the second row by −2;
(

1 0 −2 1
0 1 3

2
−1

2

)

So

A−1 =

(

−2 1
3

2
−1

2

)

We can verify:
(

1 2
3 4

)(

−2 1
3

2
−1

2

)

=

(

1(−2) + 2
(

3

2

)

1(1) + 2
(

−1

2

)

3(−2) + 4
(

3

2

)

3(1) + 3(1) + 4
(

−1

2

)

)

=

(

1 0
0 1

)

As an exercise, verify that the other multiplication also gives the identity,
i.e. that

(

−2 1
3

2
−1

2

)(

1 2
3 4

)

=

(

1 0
0 1

)

�

Example 6. Find the inverse of the matrix:

A =





1 2 3
2 0 −1
3 1 0





Answer. We start with the augmented matrix:




1 2 3 1 0 0
2 0 −1 0 1 0
3 1 0 0 0 1





We add −2 times the first row to the second and −3 times the first row to
the third:





1 2 3 1 0 0
0 −4 −7 −2 1 0
0 −5 −9 −3 0 1





Next we multiply the first row with 2 and the third with −4:




2 4 6 2 0 0
0 −4 −7 −2 1 0
0 20 36 12 0 −4




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Next we add the second row to the first and 5 times the second row to the
third





2 0 −1 0 1 0
0 −4 −7 −2 1 0
0 0 1 2 5 −4





Next we add 7 times the third row to the second, and add the third column
to the first:





2 0 0 2 6 −4
0 −4 0 12 36 −28
0 0 1 2 5 −4





Finally we divide the first row by 2 and the second by −4:




1 0 0 1 3 −2
0 1 0 3 9 −7
0 0 1 2 5 −4





So

A−1 =





1 3 −2
3 9 −7
2 5 −4





�

1.1. A formula using determinants. If A = (aij) is an n×n matrix then
we denote by Aij the (n − 1) × (n − 1)matrix obtained from A by deleting
the i-th row and the j-th column (these are the same matrices we saw in the
inductive definition of the determinant).

Proposition 7. The (i, j)-entry of the inverse matrix is given by the for-

mula:
(

A−1
)

ij
= (−1)i+j 1

detA
detAji

Notice that the indices i and j have been interchanged in the RHS of the
formula. That’s not a typo, it works that way.

Example 8. Find the inverse of the matrix:

A =

(

3 4
−2 5

)

Answer. The determinant is

detA = 3 · 5− 4(−2) = 23

The minors are just 1× 1 matrices.

A11 = 5 A12 = −2
A21 = 4 A22 = 3

So,

A−1 =
1

23

(

5 −4
2 3

)

=

(

5

23
− 4

23
2

23

3

23

)

�
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Example 9. Find the inverse of the matrix

A =





1 −1 2
3 2 4
−2 −3 6





Answer. We can calculate:

detA11 = 24 detA12 = 26 detA13 = −5
detA21 = 0 detA22 = 10 detA23 = −5
detA31 = −8 detA32 = −2 detA33 = 5

So we can calculate the determinant:

detA = 1(24) − (−1)(26) + (2)(−5) = 40

So, we have:

A−1 =
1

40





24 0 −8
−26 10 2
−5 5 5



 =





3

5
0 −1

5

−13

20

1

4

1

20

−1

8

1

8

1

8





�

Solving systems using inverse matrices. Consider the system

Ax = b

where A is a non-singular matrix. Since A has an inverse A−1 we can write:

Ax = b ⇐⇒ A−1(Ax) = A−1b

⇐⇒ (A−1A)x = A−1b

⇐⇒ Ix = A−1b

⇐⇒ Ix = A−1b

So:

Proposition 10. If A is a non-singular n × n matrix, then the solution of

the system

Ax = b

is given by

x = A−1b

Example 11. Solve the system:






x+ 2y + 3z = 2
2x − z = −2
3x+ y = 5

Answer. Notice that this system

Ax = b

where the matrix A is the same as in Example 6, and b = (2,−2, 5).



6 NIKOS APOSTOLAKIS

In Example 6 we found A−1. So the solution is

x = A−1b

=





1 3 −2
3 9 −7
2 5 −4









2
−2
5





=





−14
−47
−26





�

Change of basis. In applications, often isomorphisms appear as changes

of basis.

Proposition 12. Let T : R
n → R

n be an isomorphism, and S ⊂ R
n. By

T (S) we mean the set of all the images of the vectors in S, in other words

T (S) = {T (v) : v ∈ S}

(1) S is linearly independent if and only if T (S) is linearly independent.

(2) S is a basis if and only if T (S) is a basis.

Proposition 13. If B1 = {v1, . . . ,vn} and B2 = {ui, . . . ,un} are two bases

of Rn, then there is a unique isomorphism TB1,B2
: R

n → R
n defined by

T (vi) = ui, i = 1, . . . , n

This isomorphism is called the change of basis from B1 to B2.
Recall that the coordinates of a vector v with respect to a basis B are

the coefficients of the expression of v as a linear combination of the vectors
from B. For example if B = {i+ j,−j} the coordinates of v = 3i+ 4j with
respect to B are (3, 7).

Proposition 14. If (x1, . . . , xn) are the coordinates of a vector v with respect

to the basis B1 then the coordinates of v with respect to the basis B2 are given

by the multiplication:

[TB1,B2
]−1







x1
...

xn







Example 15. Let B2 = {i+ 2j, 3i + j}. What are the coordinates of v =
5i− 6j with respect to the basis B2?

Answer. The change of basis from B1, the standard basis of R2 to B2 has
matrix

[TB1,B2
] =

(

1 3
2 1

)

We calculate:

[TB1,B2
]−1 =

1

5

(

−1 3
2 −1

)
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So the coordinates of v in the new basis are:

1

5

(

−1 3
2 −1

)(

5
−6

)

=

(

5
−6

)

=

(

−23

5
16

5

)

We can verify this:

−
23

5
(i+ 2j) +

16

5
(3i+ j) = 5i− 6j

�

Example 16. Find the coordinates of v = (−3, 5, 1) with respect to the
basis B = {i+ j+ k, j+ k,k} or R3.

Answer. The matrix of the change of basis from the standard basis is

M =





1 0 0
1 1 0
1 1 1





We calculate:

M−1 =





1 0 0
−1 1 0
0 −1 1





So the coordinates of v with respect to B are




1 0 0
−1 1 0
0 −1 1









−3
5
1



 =





−3
8
−4





�

Properties of determinants.

Proposition 17. We have:

(1) det(AB) = det(A) det(B)

(2) detA−1 =
1

detA
(3) det(λA) = λdetA
(4) detO = 0
(5) det I = 1

Project: Row Operations via matrix multiplication. In this project
we will see that row operations can be effected by multiplying a given ma-
trix A with special kind of matrices called elementary reduction matrices or
simply elementary matrices. There are three kinds of elementary matrices,
and they are all result by performing a row operation to the identity matrix.
Scalar Matrices: A scalar matrix is obtained by multiplying one of the
rows of the identity matrix by a scalar. More specifically given λ ∈ R, and i

with 1 ≤ i ≤ n we have the n × n matrix Mi(λ), whose off diagonal entries
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are 0, and all diagonal entries are 1 except the i-th which is λ. For example,
for n = 3 we have:

M2(5) =





1 0 0
0 5 0
0 0 1





Transposition Matrices: A transposition matrix is obtained by inter-
changing two rows of the identity matrix. We denote by τij the matrix
obtained by interchanging the i-th and j-th rows of the identity matrix. For
example for n = 4, τ24 is the following matrix:

τ24 =









1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0









Combining Matrices: A combining matrix is obtained by adding a scalar
multiple of one row of In to an other row. More specifically Cij(λ) is the
matrix obtained by adding λ times the i-th row of In to the j-th row. For
example for n = 3, C3 1(−3) is the following matrix:

C3 1(−3) =





1 0 −3
0 1 0
0 0 1





(1) Prove that all elementary matrices are non-singular. In particular
prove that

detMi(λ) = λ, det τij = −1, detCij(λ) = 1

(2) Prove that multiplying an n×m matrix A on the left by Mi(λ), has
the same effect as multiplying the i-th row of A by λ.

(3) Prove that multiplying an n×m matrix A on the left by τij has the
same effect as interchanging the i-th and j-th rows of A.

(4) Prove that multiplying an n×m matrix A on the left by Cij(λ) has
the same effect as adding λ times the i-th row of A to the j-th row.

(5) Prove that

Mi(λ)
−1 = Mi(λ

−1), τ−1

ij = τij , Cij(λ)
−1 = Cij(−λ)

(6) Use the above to explain why the method of finding the inverse of a
matrix using row operations works.

(7) Use the above to explain why the method of calculating the deter-
minant using row operations works.

(8) What happens when we multiply an m×n matrix by an elementary
matrix on the right?
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