MTH 35, SPRING 2017

NIKOS APOSTOLAKIS

1. ISOMORPHISMS, INVERTIBLE MATRICES, AND DETERMINANTS AGAIN

Recall that a linear transformation is called an *isomorphism* if it is both injective and surjective. Let $T: \mathbb{R}^n \to \mathbb{R}^m$ be an isomorphism. Then observe first that since ker $T = \{0\}$ the RREF of [T] doesn't have any non-pivot columns so all *n* columns of [T] are pivot. On the other hand, we know that the pivot columns form a basis of the range of *T*, so im *T* has dimension *n*. But since *T* is surjective, im $T = \mathbb{R}^m$. It follows that m = n. So:

Proposition 1. If $T: \mathbf{R}^n \to \mathbf{R}^m$ is an isomorphism, then m = n. In particular the matrix of an isomorphism is always a square matrix.

An isomorphism has many properties. We list here a few equivalent definitions:

Proposition 2. The following are equivalent for a map $T: \mathbb{R}^n \to \mathbb{R}^n$

- (1) T is an isomorphism.
- (2) T is full-rank, i.e. r(T) = n.
- (3) T has trivial kernel, i.e. $\ker T = \{\mathbf{0}\}.$
- (4) The system $T(\mathbf{x}) = \mathbf{b}$ has a unique solution for each vector $\mathbf{b} \in \mathbb{R}^n$.
- (5) The RREF of [T] is the $n \times n$ identity matrix I_n .
- (6) T is invertible, i.e. there is an inverse linear transformation $T^{-1}: \mathbb{R}^n \to \mathbb{R}^n$ with the property:

$$T \circ T^{-1} = T^{-1} \circ T = I_n$$

where I_n stands for the identity transformation $\mathbf{x} \mapsto \mathbf{x}$.

(7) [T] the matrix of T is invertible, i.e. there is an $n \times n$ matrix $[T]^{-1}$ with the property that

$$[T][T]^{-1} = [T]^{-1}[T] = I_n$$

where now I_n stands for the $n \times n$ identity matrix.

(8) The matrix [T] is non-singular, i.e.

 $\det[T] \neq 0$

Sketch of proof: ¹ By the rank-nullity theorem the first three assertions are equivalent. The fourth is just a restatement of what it means to be both injective and surjective. The fifth just translates the second and third in

Date: March 2, 2017.

¹Fill in the details of this sketch!

NIKOS APOSTOLAKIS

terms of the RREF of T: indeed every column has to be pivot, so it will be one of the standard basic vectors, furthermore by the definition of RREF the k-th column has to be the \mathbf{e}_k .

The sixth and seventh are also equivalent since we know that the matrix of a composition of linear transformations is the product of the matrices of the linear transformations.

The fourth statement implies the sixth. Indeed, for a $\mathbf{b} \in \mathbf{R}^n$ define $T^{-1}(\mathbf{b})$ to be the unique solution of the system $T(\mathbf{x}) = \mathbf{b}$. Then by definition $T(T^{-1}(\mathbf{b})) = \mathbf{b}$. To see that $T^{-1}(T(\mathbf{x})) = \mathbf{x}$ notice that $T^{-1}(T(\mathbf{x}))$ is the unique solution to the system $T(\mathbf{x}) = T(\mathbf{x})$. One can also check that T^{-1} defined this way is linear: $T^{-1}(\lambda \mathbf{a} + \mu \mathbf{b})$ is the unique solution to the system $T(\mathbf{x}) = \lambda \mathbf{a} = \mu \mathbf{b}$. Since T is linear $\lambda T^{-1}(a) + \mu T^{-1}(b)$ is such a solution.

Similarly the sixth statement implies the fourth.

Finally by the method we have for computing determinants via row operations we can see that the fifth and eight statements are equivalent. \Box

Proposition 3. We have:

• If A is invertible then A^{-1} is also invertible and

$$\left(A^{-1}\right)^{-1} = A$$

• If A and B are invertible $n \times n$ matrices, their product AB is also invertible. Indeed

$$(AB)^{-1} = B^{-1}A^{-1}$$

Today we will concentrate on how we find the inverse of a matrix (or a linear transformation) when it exists.

Finding the inverse using row operations. If A is invertible then its RREF is the identity matrix. We will use the following fact:

Proposition 4. Let A be an invertible matrix. Then the row operations that transform A to the identity matrix, transform the identity matrix to A^{-1} .

So to find the inverse matrix of A then we construct an "augmented" matrix $[A|I_n]$, by concatenating A and the identity matrix. Then we concentrate on the left part A and use row operations to transform it to I_n . When finished the right part has been transformed to A^{-1} .

Example 5. Use row operations to find the inverse of

$$A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$$

Answer. We start with the augmented matrix:

$$\left(\begin{array}{rrrr}1 & 2 & 1 & 0\\3 & 4 & 0 & 1\end{array}\right)$$

We multiply the first row by -3 and add it to the second:

$$\left(\begin{array}{cc|c}1 & 2 & 1 & 0\\0 & -2 & -3 & 1\end{array}\right)$$

Then add the second row to the first:

$$\left(\begin{array}{cc|c}1 & 0 & -2 & 1\\0 & -2 & -3 & 1\end{array}\right)$$

finally we divide the second row by -2;

$$\left(\begin{array}{cc|c} 1 & 0 & -2 & 1 \\ 0 & 1 & \frac{3}{2} & -\frac{1}{2} \end{array}\right)$$

 So

$$A^{-1} = \begin{pmatrix} -2 & 1\\ \frac{3}{2} & -\frac{1}{2} \end{pmatrix}$$

We can verify:

$$\begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} \begin{pmatrix} -2 & 1 \\ \frac{3}{2} & -\frac{1}{2} \end{pmatrix} = \begin{pmatrix} 1(-2) + 2\left(\frac{3}{2}\right) & 1(1) + 2\left(-\frac{1}{2}\right) \\ 3(-2) + 4\left(\frac{3}{2}\right) & 3(1) + 3(1) + 4\left(-\frac{1}{2}\right) \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

As an exercise, verify that the other multiplication also gives the identity, i.e. that

$$\begin{pmatrix} -2 & 1\\ \frac{3}{2} & -\frac{1}{2} \end{pmatrix} \begin{pmatrix} 1 & 2\\ 3 & 4 \end{pmatrix} = \begin{pmatrix} 1 & 0\\ 0 & 1 \end{pmatrix}$$

Example 6. Find the inverse of the matrix:

$$A = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 0 & -1 \\ 3 & 1 & 0 \end{pmatrix}$$

Answer. We start with the augmented matrix:

We add -2 times the first row to the second and -3 times the first row to the third:

Next we multiply the first row with 2 and the third with -4:

Next we add the second row to the first and 5 times the second row to the third

$$\left(\begin{array}{ccc|c} 2 & 0 & -1 & 0 & 1 & 0 \\ 0 & -4 & -7 & -2 & 1 & 0 \\ 0 & 0 & 1 & 2 & 5 & -4 \end{array}\right)$$

Next we add 7 times the third row to the second, and add the third column to the first: (2 - 0, 0 + 2, -6, -4)

$$\left(\begin{array}{ccccccc} 2 & 0 & 0 & 2 & 6 & -4 \\ 0 & -4 & 0 & 12 & 36 & -28 \\ 0 & 0 & 1 & 2 & 5 & -4 \end{array}\right)$$

Finally we divide the first row by 2 and the second by -4:

$$\left(\begin{array}{ccc|c} 1 & 0 & 0 & 1 & 3 & -2 \\ 0 & 1 & 0 & 3 & 9 & -7 \\ 0 & 0 & 1 & 2 & 5 & -4 \end{array}\right)$$

 \mathbf{So}

$$A^{-1} = \begin{pmatrix} 1 & 3 & -2 \\ 3 & 9 & -7 \\ 2 & 5 & -4 \end{pmatrix}$$

_	
_	_

1.1. A formula using determinants. If $A = (a_{ij})$ is an $n \times n$ matrix then we denote by A_{ij} the $(n-1) \times (n-1)$ matrix obtained from A by deleting the *i*-th row and the *j*-th column (these are the same matrices we saw in the inductive definition of the determinant).

Proposition 7. The (i, j)-entry of the inverse matrix is given by the formula:

$$(A^{-1})_{ij} = (-1)^{i+j} \frac{1}{\det A} \det A_{ji}$$

Notice that the indices i and j have been interchanged in the RHS of the formula. That's not a typo, it works that way.

Example 8. Find the inverse of the matrix:

$$A = \begin{pmatrix} 3 & 4 \\ -2 & 5 \end{pmatrix}$$

Answer. The determinant is

$$\det A = 3 \cdot 5 - 4(-2) = 23$$

The minors are just 1×1 matrices.

$$\begin{array}{ll} A_{11} = 5 & A_{12} = -2 \\ A_{21} = 4 & A_{22} = 3 \end{array}$$

So,

$$A^{-1} = \frac{1}{23} \begin{pmatrix} 5 & -4 \\ 2 & 3 \end{pmatrix} = \begin{pmatrix} \frac{5}{23} & -\frac{4}{23} \\ \frac{2}{23} & \frac{3}{23} \end{pmatrix}$$

Example 9. Find the inverse of the matrix

$$A = \begin{pmatrix} 1 & -1 & 2\\ 3 & 2 & 4\\ -2 & -3 & 6 \end{pmatrix}$$

Answer. We can calculate:

$$\det A_{11} = 24 \quad \det A_{12} = 26 \quad \det A_{13} = -5 \\ \det A_{21} = 0 \quad \det A_{22} = 10 \quad \det A_{23} = -5 \\ \det A_{31} = -8 \quad \det A_{32} = -2 \quad \det A_{33} = 5$$

So we can calculate the determinant:

$$\det A = 1(24) - (-1)(26) + (2)(-5) = 40$$

So, we have:

$$A^{-1} = \frac{1}{40} \begin{pmatrix} 24 & 0 & -8\\ -26 & 10 & 2\\ -5 & 5 & 5 \end{pmatrix} = \begin{pmatrix} \frac{3}{5} & 0 & -\frac{1}{5}\\ -\frac{13}{20} & \frac{1}{4} & \frac{1}{20}\\ -\frac{1}{8} & \frac{1}{8} & \frac{1}{8} \end{pmatrix}$$

Solving systems using inverse matrices. Consider the system

 $A\mathbf{x} = \mathbf{b}$

where A is a non-singular matrix. Since A has an inverse A^{-1} we can write:

$$A\mathbf{x} = \mathbf{b} \iff A^{-1}(A\mathbf{x}) = A^{-1}\mathbf{b}$$
$$\iff (A^{-1}A)\mathbf{x} = A^{-1}\mathbf{b}$$
$$\iff I\mathbf{x} = A^{-1}\mathbf{b}$$
$$\iff I\mathbf{x} = A^{-1}\mathbf{b}$$

So:

Proposition 10. If A is a non-singular $n \times n$ matrix, then the solution of the system

$$A\mathbf{x} = \mathbf{b}$$

is given by

$$x = A^{-1}\mathbf{b}$$

Example 11. Solve the system:

$$\begin{cases} x + 2y + 3z = 2\\ 2x & -z = -2\\ 3x + y = 5 \end{cases}$$

Answer. Notice that this system

$$A\mathbf{x} = \mathbf{b}$$

where the matrix A is the same as in Example 6, and $\mathbf{b} = (2, -2, 5)$.

In Example 6 we found A^{-1} . So the solution is

$$\mathbf{x} = A^{-1}\mathbf{b}$$

= $\begin{pmatrix} 1 & 3 & -2 \\ 3 & 9 & -7 \\ 2 & 5 & -4 \end{pmatrix} \begin{pmatrix} 2 \\ -2 \\ 5 \end{pmatrix}$
= $\begin{pmatrix} -14 \\ -47 \\ -26 \end{pmatrix}$

Change of basis. In applications, often isomorphisms appear as *changes* of basis.

Proposition 12. Let $T: \mathbb{R}^n \to \mathbb{R}^n$ be an isomorphism, and $S \subset \mathbb{R}^n$. By T(S) we mean the set of all the images of the vectors in S, in other words

$$T(S) = \{T(\mathbf{v}) : \mathbf{v} \in S\}$$

- (1) S is linearly independent if and only if T(S) is linearly independent.
- (2) S is a basis if and only if T(S) is a basis.

Proposition 13. If $B_1 = {\mathbf{v}_1, \ldots, \mathbf{v}_n}$ and $B_2 = {\mathbf{u}_i, \ldots, \mathbf{u}_n}$ are two bases of \mathbb{R}^n , then there is a unique isomorphism $T_{B_1, B_2} \colon \mathbb{R}^n \to \mathbb{R}^n$ defined by

$$T(v_i) = u_i, \quad i = 1, \dots, n$$

This isomorphism is called the change of basis from B_1 to B_2 .

Recall that the *coordinates* of a vector \mathbf{v} with respect to a basis B are the coefficients of the expression of \mathbf{v} as a linear combination of the vectors from B. For example if $B = {\mathbf{i} + \mathbf{j}, -\mathbf{j}}$ the coordinates of $\mathbf{v} = 3\mathbf{i} + 4\mathbf{j}$ with respect to B are (3, 7).

Proposition 14. If (x_1, \ldots, x_n) are the coordinates of a vector \mathbf{v} with respect to the basis B_1 then the coordinates of \mathbf{v} with respect to the basis B_2 are given by the multiplication:

$$[T_{B_1,B_2}]^{-1} \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$$

Example 15. Let $B_2 = {\mathbf{i} + 2\mathbf{j}, 3\mathbf{i} + \mathbf{j}}$. What are the coordinates of $\mathbf{v} = 5\mathbf{i} - 6\mathbf{j}$ with respect to the basis B_2 ?

Answer. The change of basis from B_1 , the standard basis of \mathbb{R}^2 to B_2 has matrix

$$[T_{B_1,B_2}] = \begin{pmatrix} 1 & 3\\ 2 & 1 \end{pmatrix}$$

We calculate:

$$[T_{B_1,B_2}]^{-1} = \frac{1}{5} \begin{pmatrix} -1 & 3\\ 2 & -1 \end{pmatrix}$$

 $\mathbf{6}$

So the coordinates of \mathbf{v} in the new basis are:

$$\frac{1}{5} \begin{pmatrix} -1 & 3\\ 2 & -1 \end{pmatrix} \begin{pmatrix} 5\\ -6 \end{pmatrix} = \begin{pmatrix} 5\\ -6 \end{pmatrix} = \begin{pmatrix} -\frac{23}{5}\\ \frac{16}{5} \end{pmatrix}$$

We can verify this:

$$-\frac{23}{5}(i+2j) + \frac{16}{5}(3i+j) = 5i - 6j$$

Example 16. Find the coordinates of $\mathbf{v} = (-3, 5, 1)$ with respect to the basis $B = {\mathbf{i} + \mathbf{j} + \mathbf{k}, \mathbf{j} + \mathbf{k}, \mathbf{k}}$ or \mathbf{R}^3 .

Answer. The matrix of the change of basis from the standard basis is

$$M = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \end{pmatrix}$$

We calculate:

$$M^{-1} = \begin{pmatrix} 1 & 0 & 0 \\ -1 & 1 & 0 \\ 0 & -1 & 1 \end{pmatrix}$$

So the coordinates of \mathbf{v} with respect to B are

$$\begin{pmatrix} 1 & 0 & 0 \\ -1 & 1 & 0 \\ 0 & -1 & 1 \end{pmatrix} \begin{pmatrix} -3 \\ 5 \\ 1 \end{pmatrix} = \begin{pmatrix} -3 \\ 8 \\ -4 \end{pmatrix}$$

Properties of determinants.

Proposition 17. We have:

(1)
$$\det(AB) = \det(A) \det(B)$$

(2) $\det A^{-1} = \frac{1}{\det A}$
(3) $\det(\lambda A) = \lambda \det A$
(4) $\det O = 0$
(5) $\det I = 1$

Project: Row Operations via matrix multiplication. In this project we will see that row operations can be effected by multiplying a given matrix A with special kind of matrices called *elementary reduction matrices* or simply *elementary matrices*. There are three kinds of elementary matrices, and they are all result by performing a row operation to the identity matrix. **Scalar Matrices:** A *scalar matrix* is obtained by multiplying one of the rows of the identity matrix by a scalar. More specifically given $\lambda \in \mathbb{R}$, and iwith $1 \leq i \leq n$ we have the $n \times n$ matrix $M_i(\lambda)$, whose off diagonal entries

are 0, and all diagonal entries are 1 except the *i*-th which is λ . For example, for n = 3 we have:

$$M_2(5) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 5 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

Transposition Matrices: A transposition matrix is obtained by interchanging two rows of the identity matrix. We denote by τ_{ij} the matrix obtained by interchanging the *i*-th and *j*-th rows of the identity matrix. For example for n = 4, τ_{24} is the following matrix:

$$\tau_{24} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix}$$

Combining Matrices: A combining matrix is obtained by adding a scalar multiple of one row of I_n to an other row. More specifically $C_{ij}(\lambda)$ is the matrix obtained by adding λ times the *i*-th row of I_n to the *j*-th row. For example for n = 3, $C_{31}(-3)$ is the following matrix:

$$C_{31}(-3) = \begin{pmatrix} 1 & 0 & -3 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

(1) Prove that all elementary matrices are non-singular. In particular prove that

$$\det M_i(\lambda) = \lambda, \quad \det \tau_{ij} = -1, \quad \det C_{ij}(\lambda) = 1$$

- (2) Prove that multiplying an $n \times m$ matrix A on the left by $M_i(\lambda)$, has the same effect as multiplying the *i*-th row of A by λ .
- (3) Prove that multiplying an $n \times m$ matrix A on the left by τ_{ij} has the same effect as interchanging the *i*-th and *j*-th rows of A.
- (4) Prove that multiplying an $n \times m$ matrix A on the left by $C_{ij}(\lambda)$ has the same effect as adding λ times the *i*-th row of A to the *j*-th row.

(5) Prove that

$$M_i(\lambda)^{-1} = M_i(\lambda^{-1}), \quad \tau_{ij}^{-1} = \tau_{ij}, \quad C_{ij}(\lambda)^{-1} = C_{ij}(-\lambda)$$

- (6) Use the above to explain why the method of finding the inverse of a matrix using row operations works.
- (7) Use the above to explain why the method of calculating the determinant using row operations works.
- (8) What happens when we multiply an $m \times n$ matrix by an elementary matrix on the right?