# MTH 35, SPRING 2017 

NIKOS APOSTOLAKIS

## 1. Injections, surjections, and Isomorphisms

Definition 1. A linear transformation $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is called:

- Injective, or one-to-one if for any vector $\mathbf{b} \in \mathbb{R}^{m}$ there is at most one vector $\mathbf{x} \in \mathbb{R}^{n}$ with $T(\mathbf{x})=\mathbf{b}$. Equivalently if

$$
T(\mathbf{x})=T(\mathbf{y}) \Longrightarrow \mathbf{x}=\mathbf{y}
$$

- Surjective, or onto if for any vector $\mathbf{b} \in \mathbb{R}^{m}$ there is at least one vector $\mathbf{x} \in \mathbb{R}^{n}$ with $T(\mathbf{x})=\mathbf{b}$.
- an isomorphism if it's both injective and surjective. In other words, if for any vector $\mathbf{b} \in \mathbb{R}^{m}$ there is exactly one vector $\mathbf{x} \in \mathbb{R}^{n}$ with $T(\mathbf{x})=\mathbf{b}$.

Example 2. Consider the following linear transformation $T: \mathbb{R}^{2} \rightarrow \mathbb{R}$ :

$$
(x, y) \mapsto x-y
$$

This is a surjective linear transformation. Indeed given any real number (say 3 ) we can find a vector $\mathbf{x}=(x, y) \in \mathbb{R}^{2}$ so that $T(\mathbf{x})=3$. For example we can take $(x, y)=(1,-2)$. In fact, there is a whole line in $\mathbb{R}^{2}$, the line with equation $x-y=3$, whose each point is mapped to 5 . Of course, there is nothing special about 3 , for any real number $b$ there is a whole line of points $(x, y)$ so that $T((x, y))=b$.

This means that $T$ is not injective. Many vectors of $\mathbb{R}^{2}$ are mapped to the same vector in $\mathbb{R}$.

Example 3. Consider now the linear transformation $T: \mathbb{R}^{4} \rightarrow \mathbb{R}^{2}$ given by $T(\mathbf{x})=A \mathbf{x}$ where $A$ is the following matrix:

$$
A=\left(\begin{array}{cccc}
1 & 2 & 1 & -3 \\
3 & -2 & 3 & -1
\end{array}\right)
$$

in other words $T:\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \mapsto\left(x_{1}+2 x_{2}+x_{3}-3 x_{4}, 3 x_{1}-2 x_{2}+3 x_{3}-x_{4}\right)$.
Is this transformation surjective? This question translates to: "Does the system $A \mathbf{x}=\mathbf{b}$ has at least one solution for all $\mathbf{b} \in \mathbb{R}^{2}$ ?. If $\mathbf{b}=\left(b_{1}, b_{2}\right)$ then the augmented matrix of the system is

$$
\left(\begin{array}{cccc|c}
1 & 2 & 1 & -3 & b_{1} \\
3 & -2 & 3 & -1 & b_{2}
\end{array}\right)
$$

[^0]whose RREF is:
\[

\left($$
\begin{array}{cccc|c}
\hline 1 & 0 & 1 & -1 & \frac{b_{1}+b_{2}}{4}  \tag{1}\\
\hline 0 & 1 & 0 & -1 & \frac{3 b_{1}-b_{2}}{8}
\end{array}
$$\right)
\]

So the system has solutions for every $\mathbf{b}$ and the transformation is injective. Since there are non-pivot columns in the RREF the solutions are not unique, and so the transformation is not injective.
Example 4. Consider the linear transformation $S: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ whose matrix is

$$
[S]=\left(\begin{array}{cc}
-2 & 11 \\
3 & -13 \\
1 & -5
\end{array}\right)
$$

Look at the system $[T](\mathbf{x})=\mathbf{b}$. The augmented matrix is

$$
\left(\begin{array}{cc|c}
-2 & 11 & b_{1} \\
3 & -13 & b_{2} \\
1 & -5 & b_{3}
\end{array}\right)
$$

Te RREF is:

$$
\left(\begin{array}{cc|c}
1 & 0 & 5 b_{1}+11 b_{3}  \tag{2}\\
0 & 1 & b_{1}+2 b_{3} \\
0 & 0 & -2 b_{1}+b_{2}-7 b_{3}
\end{array}\right)
$$

The third row tell us that in order for the system to be consistent we need

$$
\begin{equation*}
-2 b_{1}+b_{2}-7 b_{3}=0 \tag{3}
\end{equation*}
$$

So this transformation is not surjective.
On the other hand as long as Condition (3) is satisfied the system has a unique solution. So this transformation is injective.

We now define two important subspaces associated with a linear transformation.
Definition 5. Let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be a linear transformation.

- The kernel or null space of $T$ is the subspace of $\mathbb{R}^{n}$ that consists of all vectors that are mapped to $\mathbf{0}$ :

$$
\operatorname{ker} T=\left\{\mathbf{x} \in \mathbb{R}^{n}: T(\mathbf{x})=\mathbf{0}\right\}
$$

The notation $\mathcal{N}(T)$ is often also used for this subspace.

- The range or image of $T$ is the subspace of $\mathbb{R}^{m}$ that consists of all vectors $\mathbf{b}$ so that the system $T(\mathbf{x})=\mathbf{b}$ has a solution:

$$
\operatorname{im} T=\left\{\mathbf{b} \in \mathbb{R}^{m}: T(\mathbf{x})=\mathbf{b}, \text { for some } \mathbf{x} \in \mathbb{R}^{n}\right\}
$$

The notation $\mathcal{R}(T)$ is also often used for this subspace.
The following holds:
Proposition 6. Let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be a linear transformation.

- $T$ is surjective if and only if, $\operatorname{im} T=\mathbb{R}^{m}$
- $T$ is injective if and only if, $\operatorname{ker} T=\{\mathbf{0}\}$

Proof. The first assertion is obvious, so let's just prove the second.
The only if part: Clearly $\mathbf{0}$ is always in the kernel of $T$ since $T(\mathbf{0})=\mathbf{0}$. If $T$ is injective there can be no other vector $\mathbf{x}$ with $T(\mathbf{x})=\mathbf{0}$.
The if part: Assume $\operatorname{ker} T=\{\mathbf{0}\}$. We prove that then $T$ is injective: let $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{n}$, we have

$$
\begin{aligned}
T(\mathbf{x})=T(\mathbf{y}) & \Longrightarrow T(\mathbf{x})-T(\mathbf{y})=\mathbf{0} \\
& \Longrightarrow T(\mathbf{x}-\mathbf{y})=\mathbf{0} \\
& \Longrightarrow \mathbf{x}-\mathbf{y} \in \operatorname{ker} T \\
& \Longrightarrow \mathbf{x}-\mathbf{y}=\mathbf{0} \\
& \Longrightarrow \mathbf{x}=\mathbf{y}
\end{aligned}
$$

Example 7. Let's revisit Example 2. Since $T$ is surjective, we have im $T=$ $\mathbb{R}$.

To find the kernel of $T$ we need to look at the set of vectors that are mapped to the zero vector. In other words look at the solution of the linear system

$$
T(\mathbf{x})=0
$$

This is the line $K$ with equation $x-y=0$. Now the set of solutions to this equation is described in parametric form as:

$$
\mathbf{x}=s(1,1), \quad s \in \mathbf{R}
$$

In other words

$$
\operatorname{ker} T=\langle(1,1)\rangle
$$

Since $\{(1,1)\}$ is a linearly independent set, it follows that $\{(1,1)\}$ is a basis of $\operatorname{ker} T$ so $\operatorname{ker} T$ is one-dimensional.

Now when we look at the set of vectors that are mapped to any other vector in $\mathbb{R}$, say 3 , we get again a line, in this case the line $L_{3}: x-y=3$, and this line is a translation of the line $K$. In fact $L_{3}$ is the translation of $L_{3}$ by the vector $(1,-2)$ that is a particular solution of the equation $x-y=3$. The same happens with $L_{-2}$ the set of vectors that are mapped to $-2, L_{-2}$ is a translation of $K$ by the vector, $(0,-2)$ that is a particular solution of $x-y=-2$.

In general, the set $L_{b}$ of vectors that are mapped to $b \in \mathbb{R}$ is a translation of $K$ by any particular solution, for example we could take the particular solution $\mathbf{p}_{b}=(0, b)$. Then we can write

$$
L_{b}=\mathbf{p}_{b}+K:=\left\{\mathbf{p}_{b}+\mathbf{x}: \mathbf{x}+K\right\}
$$

Example 8. Let's now look at Example 3. Again since $T$ is surjective we have that $\operatorname{im} T=\mathbb{R}^{2}$.


Figure 1. The transformation $T$ of Example 2

To find the kernel we have to solve the system $[T](\mathbf{x})=\mathbf{0}$. From the RREF of its augmented matrix we see that $x_{3}$ and $x_{4}$ are free variables, so by setting $x_{3}=s$ and $x_{4}=s$ we get the parametric form:

$$
\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=(s-t,-t, s, t)
$$

or equivalently:

$$
\mathbf{x}=s(1,0,1,0)+t(-1,-1,0, t), \quad s, t \in \mathbb{R}
$$

In other words

$$
\operatorname{ker} T=\langle(1,0,1,0),(-1,-1,0,1)\rangle
$$

and since $\{(1,0,1,0),(-1,-1,0,1)\}$ is a linear independent set it is a basis of $\operatorname{ker} T$. So the kernel is 2-dimensional.

Notice that the non-pivot columns of the RREF gave us a basis of $\operatorname{ker} T$ by the above procedure. Each non-pivot column gives a free variable, and then a vector in the basis of $\operatorname{ker} T$.

What about the set $L_{\mathbf{b}}$ of vectors that are mapped to a vector $\mathbf{b}$, that is the solutions of the system $[T] \mathbf{x}=\mathbf{b}$ ?

From (1) we see that

$$
L_{\mathbf{b}}=\mathbf{p}_{\mathbf{b}}+\operatorname{ker} T
$$

where, $\mathbf{p}_{\mathbf{b}}=\left(\frac{b_{1}+b_{2}}{4}, \frac{3 b_{1}-b_{2}}{8}\right)$. Of course, $\mathbf{p}_{\mathbf{b}}$ is a particular solution.
In general we have that
Proposition 9. For a linear transformation $T: \mathbf{R}^{n} \rightarrow \mathbf{R}^{m}$, and a vector $\mathbf{b} \in \mathbb{R}^{M}$, the set of vectors $L_{\mathbf{b}}$ that are mapped to $\mathbf{b}$, is a translation of $\operatorname{ker} T$ by a (any) particular vector in $L_{\mathbf{b}}$.

Example 10. Let's look at Example 4. Now we have an injective transformation, so $\operatorname{ker} T=\{\mathbf{0}\}$.

To find $\operatorname{im} T$ we have to find for which $\in \mathbb{R}^{3}$ the system $[T](\mathbf{x})=\mathbf{b}$ has a solution. From the discussion in Example 4 we know that this subspace consists of those vectors $\mathbf{b}=\left(b_{1}, b_{2}, b_{3}\right) \in \mathbb{R}^{3}$ whose coordinates satisfy

We can solve Condition (3) for $b_{2}$ and we get

$$
b_{2}=2 b_{1}+7 b_{3}
$$

so that $\operatorname{im} T$ has the parametric description

$$
\mathbf{b}=s(1,2,0)+t(0,7,1), \quad s, t \in \mathbb{R}
$$

In other words,

$$
\operatorname{im} T=\langle(1,2,0),(0,7,1)\rangle
$$

and since $\{(1,2,0),(0,7,1)\}$ is linearly independent, it is a basis of $\operatorname{im} T$. So $\operatorname{im} T$ is 2 -dimensional.

In the last example we found a basis for the range of $T$, by explicitly figuring under what conditions on $\mathbf{b}$ the system $[T] \mathbf{x}=\mathbf{b}$ has solutions. We could have avoided all that work by reasoning as follows: The columns of the matrix $[T]$ are the (coordinates of the) images of the standard basis of $\mathbb{R}^{n}$, so im $T$ is generated by (the vectors whose coordinates are) the columns of $T$. This means that the pivot columns of $[T]$ form a basis of im $T]^{1}$ So a basis for the range of $T$ in Example 4 is formed by the columns of $[T]$ (since all columns are pivot). So a basis for $\operatorname{im} T$ is $\{(-2,3,1),(11,-13,5)\}$.

In general we have:
Proposition 11. Let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be a linear transformation. Then The columns of $[T]$ that correspond to the pivot columns of the RREF form a basis of the subspace $\operatorname{im} T$.

A basis of $\operatorname{ker} T$, is obtained by putting the solution of the homogeneous system $[T] \mathbf{x}=\mathbf{0}$ in to parametric form. There is one basic vector for every non-pivot column.

Definition 12. The rank of a linear transformation $T$ is the dimension of its range:

$$
r(T)=\operatorname{dimim} T
$$

The nullity of a linear transformation $T$ is the dimension of its kernel:

$$
n(T)=\operatorname{dim} \operatorname{ker} T
$$

We immediately have:
Proposition 13. The rank of a linear transformation $T$ equals the number of the pivot columns of $[T]$. The nullity of $T$ equals the number of the non-pivot columns of $[T]$.

If $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ then

$$
r(T)+n(T)=n
$$

[^1]Example 14. Find the rank and nullity of the following $3 \times 5$ matrix:

$$
\left(\begin{array}{ccccc}
1 & 0 & -3 & 2 & 1 \\
2 & 1 & 3 & -4 & 0 \\
3 & 1 & 0 & -2 & 1
\end{array}\right)
$$

Answer. The RREF is

$$
\left(\begin{array}{ccccc}
1 & 0 & -3 & 2 & 1 \\
0 & 1 & 9 & -8 & -2 \\
0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

There are two pivot and three non-pivot columns. Therefore $r(T)=2$ and $n(T)=3$.
Question 15. Find a basis for $\operatorname{im} T$ and $\operatorname{ker} T$ for the linear transformation of Example 14 .

Finally, we give an example of a linear transformation that is both injective and surjective, in other words an isomorphism.
Example 16. The linear transformation $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ whose matrix is given below is an isomorphism:

$$
[T]=\left(\begin{array}{ccc}
1 & 2 & 3 \\
2 & 3 & -1 \\
3 & 0 & 2
\end{array}\right)
$$

Indeed the RREF is the $3 \times 3$ identity matrix. So every system $[T] \mathbf{x}=\mathbf{b}$ has a unique solution.

We will talk more about isomorphisms in the next lecture.

## 2. Project: Orthogonal Complements

Start with the first example from Section 1. Recall that the kernel of the transformation $T: \mathbb{R}^{2} \rightarrow \mathbb{R}$ is the line $K$ with equation $x-y=0$. The line passing through the origin and orthogonal to $K$ is the line with equation $x+y=0$. Let's denote that line with $K^{\perp}$. Notice that $K^{\perp}$ is a subspace of $R^{2}$.

Notice also that for any $b \in \mathbb{R}$ there are infinitely many vectors $\mathbf{x} \in \mathbb{R}^{2}$ with $T(\mathbf{x})=b$, but only one of all these vectors lies in $K^{\perp}$. This allow us to chose a unique canonical solution to the equation $x-y=b$ : just chose the vector that is perpendicular to the kernel.

Notice also that if we restrict $T$ to have domain $K^{\perp}$, i.e. if we consider $T: K^{\perp} \rightarrow \mathbb{R}$ then $T$ is an isomorphism.

We have an analogous situation for any linear transformation. In this project we develop this idea.
Definition 17. Let $V$ be a linear subspace of $\mathbb{R}^{n}$. The orthogonal complement of $V$ is defined as

$$
V^{\perp}=\left\{\mathbf{u} \in \mathbb{R}^{n}: \mathbf{u} \cdot \mathbf{v}=0\right\}
$$




Figure 2. The transformation $T$ of Example 2, again

## Exercises.

(1) Prove that $V^{\perp}$ is a linear subspace of $\mathbb{R}^{n}$.
(2) Prove that the only vector that is common to $V$ and $V^{\perp}$ is the zero vector:

$$
V \cap V^{\perp}=\{\mathbf{0}\}
$$

(3) Prove that if $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}\right\}$ is a basis of $V$ then

$$
V^{\perp}=\left\{\mathbf{u} \in \mathbb{R}^{n}: \mathbf{u} \cdot \mathbf{v}_{i}=0, \quad i=1, \ldots, k\right\}
$$

(4) Prove that $\operatorname{dim} V^{\perp}=n-\operatorname{dim} V$

Hint. The previous question gives a system whose solution set is $V^{\perp}$
(5) If $T: \mathbb{R} \rightarrow \mathbb{R}^{m}$ is a linear transformation, then if we restrict $T$ to the orthogonal complement of the kernel, $T$ becomes injective. In other words $T:(\operatorname{ker} T)^{\perp} \rightarrow \mathbb{R}^{m}$ is injective.
(6) Find a basis for $(\operatorname{ker} T)^{\perp}$ where $T$ is the linear transformation of Example 3,
(7) This exercise also refers to Example3 For $\mathbf{b}=(3,4)$ find the unique $\mathbf{x} \in(\operatorname{ker} T)^{\perp}$ so that $T(\mathbf{x})=\mathbf{b}$.


[^0]:    Date: February 27, 2017.

[^1]:    ${ }^{1}$ Why?

