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1. Linear transformations

Definition 1. A function T : R
n
→ R

m is called a linear transformation if,
for any scalars λ, µ ∈ R and any vectors u,v ∈ R

n we have:

T (λu+ µv) = λT (u) + µT (v)

The following properties are consequence of the definition:

Proposition 2. A linear transformation T : R
n
→ Rm

(1) takes 0 to 0, i.e. T (0) = 0

(2) takes sums to sums, i.e. T (u+ v) = T (u) + T (v)
(3) takes scalar multiples to scalar multiples, i.e. T (λv) = λT (v)
(4) takes linear combinations to linear combinations, i.e.

T (λ1v1 + λ2v2 + . . .+ λkvk) = λ1T (v1) + λ2T (v2) + . . . λkT (vk)

Furthermore, if properties (2) and (3) hold for a function T : R
n
→ R

m,
then T is a linear transformation.

Example 3. The zero transformation, O : R
n
→ R

m is defined as: T (x) = 0

O is clearly linear.

Example 4. The identity transformation, In : R
n

→ R
n is defined as:

In(x) = x In is clearly linear.

Example 5. Let T : R
2
→ R be given by T (xi+ yj) = 2x−3y. Then T is a

linear transformation. Indeed, let u = u1i+u2j, v = v1i+v2j, and λ, µ ∈ R.
Then we have:

T (λu+ µv) = T ((λu1 + µv1) i+ (λu2 + µv2) j)

= 2 (λu1 + µv1) + 3 (λu2 + µv2)

= 2 (λu1 + µv1) + 3 (λu2 + µv2)

= 2λu1 + 2µv1 + 3λu2 + 3µv2

and

λT (u) + µT (v) = λ(2u1 + 3u2) + µ(2v1 + 3v2)

= 2λu1 + 3λu2 + 2µv1 + 3µv2
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Example 6. Let T : R
2
→ R

3 be defined by T (xi+yj) = −xi+(x+y)j+2yk.
This is also a linear transformation.

Indeed, let u = u1i+ u2j, v = v1i+ v2j, and λ, µ ∈ R. Then we have:

T (λu+ µv) = T ((λu1 + µv1) i+ (λu2 + µv2) j)

= − (λu1 + µv1) i+ ((λu1 + µv1) + (λu2 + µv2)) j+ 2 (λu2 + µv2)k

= (−λu1 − µv1) i+ (λu1 + µv1 + λu2 + µv2) j+ (2λu2 + 2µv2)k

and

λT (u) + µT (v) = λ (−u1i+ (u1 + u2)j+ 2u2k) + µ (−v1i+ (v1 + v2)j+ 2v2k)

= −λu1i+ λ(u1 + u2)j+ 2λu2k− µv1i+ µ(v1 + v2)j+ 2µv2k

= (−λu1 − µv1) i+ (λu1 + λu2 + µv1 + µv2) j+ (2λu2 + 2µv2)k

We can get many more examples by using multiplication of a vector by a
matrix 1. In previous classes we were writing Ax for the variable part of a
linear system. We now make this notation official:

Definition 7. Let A be an m × n matrix and x ∈ R
n. Then the product

Ax is the a vector in R
m given by

Ax = (r1 · x, . . . , rm · x)

where rj , j = 1, . . . ,m are the row vectors of A and · is the dot product.
In expanded form, if we write x and Ax as column vectors we have:










a11 a12 . . . a1n
a21 a22 . . . a2n
...

...
. . .

...
am1 an2 . . . amn





















x1
x2
...
xn











=











a11x1 + a12x2 + · · ·+ a1nxn
a21x1 + a22x2 + · · ·+ a2nxn

...
am1x1 + am2x2 + · · ·+ amnxn











Proposition 8. If A is an m× n matrix, then the function TA : R
n
→ R

m

defined by
TA(x) = Ax

is a linear transformation.

Example 9. The 2× 2 matrix

A =

(

1 −2
−3 4

)

gives the linear transformation TA : R
2
→ R

2:
(

x1
x2

)

7→

(

1 −2
−3 4

)(

x1
x2

)

=

(

x1 − 2x2
−3x1 + 4x2

)

Or by using “horizontal” notation for vectors:

TA ((x1, x2)) = (x1 − 2x2,−3x1 + 4x2)

As an exercise, do verify that this formula indeed defines a linear transfor-
mation.

1In the next section we see that this is a special case of multiplication of two matrices.
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It turns out that all linear transformations come from multiplying by a
matrix. We explain this below:

If T is a linear transformation, then if we know the values T (bi) for all
vectors in a basis of Rn we can determine the value for any vector v ∈ R

n.
Indeed, v is a linear combination of the vectors bi, say v = x1b1+. . .+xnbn,
and by property (4) in Proposition 2 we have that

T (v) = x1T (b1) + . . .+ xnT (bn)

In particular, we can use the values of T in the standard basis ei of Rn. Each
T (ei) is a vector in R

m so it has m coordinates in the standard basis of Rm,
and we can organize all these values into and m× n matrix:

Definition 10. The matrix of a linear transformation T : R
n
→ R

m is the
matrix [T ] that has as columns the values T (ei), where ei, i = 1, . . . , n is
the standard basis of Rn, i.e.

[T ] =
[

T (e1) . . . T (e)n
]

Example 11. The matrix of the zero transformation (see Example 3) is the
zero matrix: all entries are 0.

Example 12. The matrix of the identity transformation In is the so-called
n× n identity matrix :











1 0 . . . 0
0 1 . . . 0
...

...
. . .

...
0 0 . . . 1











Example 13. If T is the linear transformation of Example 5 we have:

T (e1) = 2, T (e2) = −3

so we get the 1× 2 matrix:

[T ] =
(

2 −3
)

Notice that

[T ]x =
(

2 −3
)

(

x

y

)

=
(

2x− 3y
)

Example 14. For the linear transformation of Example 6 we have:

T (e1) = (−1, 1, 0), T (e2) = (0, 1, 2)

so

[T ] =





−1 0
1 1
0 2





Notice that

[T ]v =





−1 0
1 1
0 2





(

x

y

)

=





−x

x+ y

2y







4 NIKOS APOSTOLAKIS

So, as in the previous Example, the linear transformation we get by multi-
plying with the matrix [T ] is T itself.

Proposition 15. For any linear transformation T , we have:

T (x) = [T ]x

2. Matrix Multiplication

Definition 16. Let A be an m× n and B and n× k matrix. Write A as a
column of row vectors and B as a a row of column vectors:

A =











r1
r2
...
rm











B =
(

c1 c2 · · · ck
)

Then we define the product A ·B to be the n× k matrix

AB = (ri · cj), i = 1, . . . ,m, j = 1, . . . , k

i.e. the (i, j) entry of AB is the dot product of the ith row of A with the
jth column of B. Notice that this makes sense because each row of A and
each column of B are in R

n.

Proposition 17. The multiplication of matrices has the following properties:

(1) It is associative: If A, B, and C are matrices then

(AB)C = A(BC)

(2) It distributes over addition from the left and from the right:

A(B + C) = AB +AC, (A+B)C = AC +BC

(3) It is linear; if λ ∈ R then:

(λA)B = λ(AB) A(λB) = λ(AB)

Since multiplication of matrices is not always defined, the above equations
should be understood as saying than whenever the left side is defined, the
right side is also defined and is equal to the left side.

Remark 18. In general multiplication of matrices is not commutative. If A
and B are matrices so that AB and BA are both defined, the two products
are not necessarily equal.

Example 19. Let

A =

(

1 2
3 4

)

, B =

(

1 3
2 4

)

Then we can calculate:

AB =

(

5 11
11 25

)

, BA =

(

10 14
14 20

)
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Definition 20. The zero m × n matrix is the matrix whose all entries are
0. We usually denote the zero m × n matrix by Omn or, when there is no
risk of confusion, simply by O.

The identity n × n matrix is the matrix that has every diagonal entry
equal to 1, and all other entries equal to 0. We denote the n × n identity
matrix by In or, when there is no risk of confusion, simply by I.

Proposition 21. We have:

• OA = O, AO = O

• IA = A, AI = A

whenever the products are defined.

Why do we multiply matrices that way? The answer is that matrix mul-
tiplication corresponds to composition linear transformations.

Proposition 22. Let T : R
n
→ R

m and S : Rm
→ R

k then

(1) The composition S ◦ T : R
n
→ R

k is also a linear transformation.
(2) The matrix of S ◦T equals to the product of the matrix of S with the

matrix of T , that is:

[S ◦ T ] = [S][T ]

2.1. Exercises.
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