MTH 35, SPRING 2017

NIKOS APOSTOLAKIS

1. LINEAR INDEPENDENCE

Example 1. Recall the set $S=\left\{\mathbf{a}_{i}: i=1, \ldots, 5\right\} \subset \mathbb{R}^{4}$ of the last two lectures, where

$$
\begin{aligned}
& \mathbf{a}_{1}=(1,1,3,1) \\
& \mathbf{a}_{2}=(2,1,2,-1) \\
& \mathbf{a}_{3}=(7,3,5,-5) \\
& \mathbf{a}_{4}=(1,1,-1,2) \\
& \mathbf{a}_{5}=(-1,0,9,0)
\end{aligned}
$$

We want to look at $\langle S\rangle$ in more detail. The question whether a given vector $\mathbf{b} \in \mathbb{R}^{4}$ is in $\langle S\rangle$ reduces to solving the vector equation

$$
x_{1} \mathbf{a}_{1}+x_{2} \mathbf{a}_{2}+x_{3} \mathbf{a}_{3}+x_{4} \mathbf{a}_{4}+x_{5} \mathbf{a}_{5}=\mathbf{b}
$$

which in turn reduces to solving the system of linear equations:

$$
A \mathbf{x}=\mathbf{b}
$$

where A is the coefficient matrix of the system.
Last time we saw that the RREF of A is the matrix:

$$
\left(\begin{array}{ccccc}
\boxed{1} & 0 & -1 & 0 & 3 \\
0 & \boxed{1} & 4 & 0 & -1 \\
0 & 0 & 0 & \boxed{1} & -2 \\
0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

which has rank 3 . So if the system is consistent, the solution set of the system has two parameters (or degrees of freedom) coming from the free variables x_{3} and x_{5} that correspond to the non-pivot columns. We can write the solution set in parametric form as:

$$
\begin{aligned}
& x_{1}=b_{1}^{\prime}+s-3 t \\
& x_{2}=b_{2}^{\prime}-4 s+t \\
& x_{3}=s \\
& x_{4}=b_{4}^{\prime}+2 t \\
& x_{5}=t
\end{aligned}
$$

[^0]where $b_{i}^{\prime}, i=1,2,4$ are the entries of the last column of the RREF of the augmented matrix of the system.

This means, that if a vector \mathbf{b} is in $\langle S\rangle$ then it can be written as a linear combination of elements from S in ifinitely many ways: just chose arbitrary real values for s and t, any such choice gives a way to write \mathbf{b} as a linear combination of elements of S.

Now, one particular choice of the parameters is $s=t=0$. We get

$$
\mathbf{b}=b_{1}^{\prime} \mathbf{a}_{1}+b_{2}^{\prime} \mathbf{a}_{2}+b_{4}^{\prime} \mathbf{a}_{4}
$$

So, any vector that is in $\langle S\rangle$ can actually be written as a linear combination of only $\mathbf{a}_{1}, \mathbf{a}_{2}, \mathbf{a}_{4}$. In other words, $\langle S\rangle=\left\langle\mathbf{a}_{1}, \mathbf{a}_{2}, \mathbf{a}_{3}\right\rangle$.

Furthermore, the coefficients $b_{1}^{\prime}, b_{2}^{\prime}, b_{4}^{\prime}$ are uniquely determined ${ }^{1}$. So any vector in $\langle S\rangle$ can be written as a linear combination of $\mathbf{a}_{1}, \mathbf{a}_{2}, \mathbf{a}_{4}$ in a unique way.

Now since the "superfluous" vectors $\mathbf{a}_{3}, \mathbf{a}_{5}$ are in $\langle S\rangle$, we can express them as linear combination of $\mathbf{a}_{i}, i=1,2,4$. Indeed we have:

$$
\mathbf{a}_{3}=-\mathbf{a}_{1}+4 \mathbf{a}_{2}
$$

and

$$
\mathbf{a}_{5}=3 \mathbf{a}_{1}-\mathbf{a}_{2}-2 \mathbf{a}_{4}
$$

In sum: the set S contains "superfluous" vectors, that are already linear combinations of the other vectors in S. If a vector can be expressed at all, as a linear combination of vectors from S, it can be expressed in infinitely many ways. When we remove the "superfluous" vectors \mathbf{a}_{3}, and \mathbf{a}_{5} from S, the remaining vectors span the same subspace. Now however, a vector in that subspace can be expressed uniquely as a linear combination of $\mathbf{a}_{1}, \mathbf{a}_{2}, \mathbf{a}_{4}$.

Example 2. Now let's look at the last problem from the homework. We now have the set $B=\left\{(1,1,1),(1,1,0),(1,0,-1)\right.$ in \mathbb{R}^{3}. When we set up the system that decides whether a given vector \mathbf{b} is in $\langle B\rangle$ we have:

$$
A \mathbf{x}=\mathbf{b}
$$

where,

$$
A=\left(\begin{array}{ccc}
1 & 1 & 1 \\
1 & 1 & 0 \\
1 & 0 & -1
\end{array}\right)
$$

The RREF of the coefficient matrix is now:

$$
\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

This means that for any \mathbf{b} the system has a unique solution. So any vector in \mathbb{R}^{3} can be written as as a linear combination of vectors from B, in a unique way.

[^1]Proposition 3. For a set of vectors S in a Euclidean space \mathbb{R}^{n} the following conditions are all equivalent (in other words if one of the conditions holds they all hold):
(1) Any vector in $\langle S\rangle$ can be expressed as a linear combination of vectors from S in a unique way.
(2) No vector from S can be expressed as linear combination of the other vectors from S.
(3) The only way to express $\mathbf{0}$ as a linear combination of vectors from S is to have all coefficients equal to 0 .
(4) All the columns of the RREF of the matrix that has as columns the coordinates of the vectors of S, are pivot.

Definition 4. A set of vectors in \mathbb{R}^{n} is called linearly independent if one (and hence all) of the conditions in Proposition 3 holds. As set that is not linearly independent is called linealy dependent.

Example 5. In \mathbb{R}^{4}, the set S from Example 1 is linearly dependent. It's subset $S^{\prime}=\left\{\mathbf{a}_{1}, \mathbf{a}_{2}, \mathbf{a}_{3}\right.$ is linearly independent.

Example 6. In \mathbb{R}^{3}, the set B from Example 2 is linearly independent.
Example 7. In \mathbb{R}^{4}, the vectors $\mathbf{u}=(2,3,1,0), \mathbf{v}=(0,-1,0,-2)$, and $\mathbf{w}=(0,0,0,1)$ form a linearly independent set.

Indeed, the matrix that has these vectors as columns is:

$$
\left(\begin{array}{ccc}
2 & 0 & 0 \\
3 & -1 & 0 \\
4 & 0 & 0 \\
0 & -2 & 1
\end{array}\right)
$$

and its RREF is

$$
\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right)
$$

Notice that every column contains a leading 1 .
Example 8. In \mathbb{R}^{3}, the set $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}$ where $\left.\mathbf{v}_{1}=(3,4,5)\right)$, $\mathbf{v}_{2}=(2,9,2)$, and $\mathbf{v}_{3}=(4,18,4)$ is linearly dependent.

Indeed we get the matrix:

$$
\left(\begin{array}{ccc}
3 & 2 & 4 \\
4 & 9 & 18 \\
5 & 2 & 4
\end{array}\right)
$$

with RREF

$$
\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 2 \\
0 & 0 & 0
\end{array}\right)
$$

Notice that the third row is not pivot.

1.1. Exercises.

(1) Complete all the details in this section

2. Basis and Dimension

Definition 9. A subset B of a linear subspace V of \mathbb{R}^{n} is called a basis of V, if the following two conditions hold:

- B spans V, in other words, $\langle B\rangle=V$
- B is linearly independent.

Example 10. The basic vectors $\mathbf{i}, \mathbf{j}, \mathbf{k}$ are called basic because they form a basis of \mathbb{R}^{3}.

- In \mathbb{R}^{2} the vectors $\mathbf{i}=\mathbf{e}_{1}=(1,0)$ and $\mathbf{j}=\mathbf{e}_{2}=(0,1)$ form a basis of \mathbf{R}^{2}. This basis is called the standard basis of \mathbb{R}^{2}.
- In \mathbb{R}^{3} the vectors $\mathbf{i}=\mathbf{e}_{1}=(1,0,0), \mathbf{j}=\mathbf{e}_{2}=(0,1,0)$, and $\mathbf{k}=\mathbf{e}_{3}=$ $(0,0,1)$ form a basis of \mathbf{R}^{3}. This basis is called the standard basis of \mathbb{R}^{3}.
- In \mathbb{R}^{4} the vectors $\mathbf{e}_{1}=(1,0,0,0), \mathbf{e}_{2}=(0,1,0,0), \mathbf{e}_{3}=(0,0,1,0)$, and $\mathbf{e}_{4}=(0,0,0,1)$ form a basis of \mathbf{R}^{4}. This basis is called the standard basis of \mathbb{R}^{4}.
- In general, in \mathbb{R}^{n} the vectors $\mathbf{e}_{i}, i=1,2, \ldots, n$ form a a basis of \mathbb{R}^{n}. The vector \mathbf{e}_{i} has all coordinates but the i th equal to 0 and the i th coordinate equal to 1 . This basis is called the standard basis of \mathbb{R}^{n}.

In general a subspace will have infinitely many bases. We've already seen a basis of \mathbb{R}^{3} different than the standard one in Example 2 Indeed in that example $\langle B\rangle=\mathbb{R}^{3}$ and B is linearly independent. Notice that B has three vectors, as many as the standard basis. This is more generally true, and it means that the dimension of \mathbb{R}^{3} is 3 .

Proposition 11. For any subspace V of \mathbb{R}^{n} we have:

- V has a basis.
- All bases of the same subspace have the same number of vectors.

Definition 12. The number of vectors in a basis of a subspace V is called the dimension of the subspace.

Example 13. The dimension of \mathbb{R}^{n} is n.
Example 14. Let $V=\langle S\rangle$, the linear span of the set S in Example 1 We show in Example \rceil that $\left\{\mathbf{a}_{1}, \mathbf{a}_{2}, \mathbf{a}_{3}\right\}$ spans V, and from Example 5 we know that it is linearly independent. So $\operatorname{dim} V=3$.

In general it turns out that:
Proposition 15. Let $S=\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}\right\}$ be a finite subset of \mathbb{R}^{n}. Then the dimension of $\langle S\rangle$ equals the rank of the matrix whose columns are the vectors of S. Actually the vectors of S that correspond to the pivot columns of the RREF of the matrix form a basis of $\langle S\rangle$.

Example 16. In \mathbb{R}^{4} consider the set $S=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}, \mathbf{v}_{4}, \mathbf{v}_{5}\right\}$, where $\mathbf{v}_{1}=$ $(1,1,2,1), \mathbf{v}_{2}=(2,2,4,2), \mathbf{v}_{3}=(2,0,-1,1), \mathbf{v}_{4}=(7,1,-1,4)$, and $\mathbf{v}_{5}=$ ($0,2,5,1$).

The RREF of the matrix $\left[\mathbf{v}_{1} \mathbf{v}_{2} \mathbf{v}_{3} \mathbf{v}_{4} \mathbf{v}_{5}\right]$ is

$$
\left(\begin{array}{ccccc}
\boxed{1} & 2 & 0 & 1 & 2 \\
0 & 0 & \boxed{1} & 3 & -1 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

So a basis of $\langle S\rangle$ is $\left\{\mathbf{v}_{1}, \mathbf{v}_{3}\right\}$ and $\operatorname{dim}\langle S\rangle=2$.
Question 17. What about the zero-subspace, i.e. the subspace that contains only $\mathbf{0}$ the zero vector? What is its dimension? Does it even have a basis?

Answer. This is actually a subtle issue. It turns out that it is logically consistent to posit that the empty set \emptyset is a basis of $\{\mathbf{0}\}$. So $\operatorname{dim}\{\mathbf{0}\}=0$.

Definition 18. If B is a basis of a subspace V then every vector $\mathbf{v} \in V$ can be written uniquelly as a linear combination of elements of B. The coefficients of this linear combination are called the coordinates of \mathbf{v} with respect to the basis B
Example 19. The coordinates of a vector in \mathbb{R}^{n} are actually its coordinates with respect to the standard basis of \mathbb{R}^{n}.
Example 20. This refers to Example 1. The coordinates of \mathbf{a}_{3} with respect to the basis $\left\{\mathbf{a}_{1}, \mathbf{a}_{2}, \mathbf{a}_{4}\right\}$ are $(-1,2,0)$ and the coordinates of \mathbf{a}_{5} with respect to the same basis are $(3,-1,-2)$.

2.1. Exercises.

(1) Complete all the details in this section.
(2) Find the coordinates of the vector $2 \mathbf{i}-3 \mathbf{j}+\mathbf{k}$ with respect to the basis of \mathbb{R}^{3} given in Example 2.
2.2. Project: Homogenuous Systems. A linear system where all constants are 0 , in other words a system of the form $A \mathbf{x}=\mathbf{0}$ is called a homogeneous system.
(1) Prove that a homogeneous system is always consistent.
(2) Let N be the solution set of an $m \times n$ homogeneous system. Prove that N is a linear subspace of \mathbf{R}^{n}.
(3) Prove that the columns of A that correspond to the free variables form a basis for N. What that means if there are no free variables?
(4) Conclude that the dimension of N is equal to $n-r$ where r is the rank of A.
(5) Prove that if \mathbf{p} is any solution of the system $A \mathbf{x}=\mathbf{b}$, where \mathbf{b} is vector in \mathbb{R}^{n}, then the solution set of the system is

$$
S=\{\mathbf{p}+\mathbf{v}: \mathbf{v} \in N\}
$$

[^0]: Date: February 20, 2017.

[^1]: ${ }^{1}$ Why?

