MTH 35, SPRING 2017

NIKOS APOSTOLAKIS

1. LINEAR INDEPENDENCE

Example 1. Recall the set $S = {\mathbf{a}_i : i = 1, ..., 5} \subset \mathbb{R}^4$ of the last two lectures, where

 $\begin{aligned} \mathbf{a}_1 &= (1, 1, 3, 1) \\ \mathbf{a}_2 &= (2, 1, 2, -1) \\ \mathbf{a}_3 &= (7, 3, 5, -5) \\ \mathbf{a}_4 &= (1, 1, -1, 2) \\ \mathbf{a}_5 &= (-1, 0, 9, 0) \end{aligned}$

We want to look at $\langle S \rangle$ in more detail. The question whether a given vector $\mathbf{b} \in \mathbb{R}^4$ is in $\langle S \rangle$ reduces to solving the vector equation

$$x_1\mathbf{a}_1 + x_2\mathbf{a}_2 + x_3\mathbf{a}_3 + x_4\mathbf{a}_4 + x_5\mathbf{a}_5 = \mathbf{b}$$

which in turn reduces to solving the system of linear equations:

$$A\mathbf{x} = \mathbf{b}$$

where A is the coefficient matrix of the system.

Last time we saw that the RREF of A is the matrix:

$$\begin{pmatrix} 1 & 0 & -1 & 0 & 3 \\ 0 & 1 & 4 & 0 & -1 \\ 0 & 0 & 0 & 1 & -2 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$

which has rank 3. So *if the system is consistent*, the solution set of the system has two parameters (or *degrees of freedom*) coming from the free variables x_3 and x_5 that correspond to the non-pivot columns. We can write the solution set in parametric form as:

$$x_1 = b'_1 + s - 3t$$

$$x_2 = b'_2 - 4s + t$$

$$x_3 = s$$

$$x_4 = b'_4 + 2t$$

$$x_5 = t$$

Date: February 20, 2017.

where b'_i , i = 1, 2, 4 are the entries of the last column of the RREF of the *augmented* matrix of the system.

This means, that if a vector **b** is in $\langle S \rangle$ then it can be written as a linear combination of elements from S in ifinitely many ways: just chose arbitrary real values for s and t, any such choice gives a way to write **b** as a linear combination of elements of S.

Now, one particular choice of the parameters is s = t = 0. We get

$$\mathbf{b} = b_1' \mathbf{a}_1 + b_2' \mathbf{a}_2 + b_4' \mathbf{a}_4$$

So, any vector that is in $\langle S \rangle$ can actually be written as a linear combination of only $\mathbf{a}_1, \mathbf{a}_2, \mathbf{a}_4$. In other words, $\langle S \rangle = \langle \mathbf{a}_1, \mathbf{a}_2, \mathbf{a}_3 \rangle$.

Furthermore, the coefficients b'_1, b'_2, b'_4 are uniquely determined¹. So any vector in $\langle S \rangle$ can be written as a linear combination of $\mathbf{a}_1, \mathbf{a}_2, \mathbf{a}_4$ in a unique way.

Now since the "superfluous" vectors $\mathbf{a}_3, \mathbf{a}_5$ are in $\langle S \rangle$, we can express them as linear combination of \mathbf{a}_i , i = 1, 2, 4. Indeed we have:

$$\mathbf{a}_3 = -\mathbf{a}_1 + 4\mathbf{a}_2$$

and

$$\mathbf{a}_5 = 3\mathbf{a}_1 - \mathbf{a}_2 - 2\mathbf{a}_4$$

In sum: the set S contains "superfluous" vectors, that are already linear combinations of the other vectors in S. If a vector can be expressed at all, as a linear combination of vectors from S, it can be expressed in infinitely many ways. When we remove the "superfluous" vectors \mathbf{a}_3 , and \mathbf{a}_5 from S, the remaining vectors span the same subspace. Now however, a vector in that subspace can be expressed uniquely as a linear combination of $\mathbf{a}_1, \mathbf{a}_2, \mathbf{a}_4$.

Example 2. Now let's look at the last problem from the homework. We now have the set $B = \{(1, 1, 1), (1, 1, 0), (1, 0, -1) \text{ in } \mathbb{R}^3$. When we set up the system that decides whether a given vector **b** is in $\langle B \rangle$ we have:

$$A\mathbf{x} = \mathbf{b}$$

where,

$$A = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 0 \\ 1 & 0 & -1 \end{pmatrix}$$

The RREF of the coefficient matrix is now:

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

This means that for any **b** the system has a *unique* solution. So any vector in \mathbb{R}^3 can be written as as a linear combination of vectors from B, in a *unique* way.

 1 Why?

Proposition 3. For a set of vectors S in a Euclidean space \mathbb{R}^n the following conditions are all equivalent (in other words if one of the conditions holds they all hold):

- (1) Any vector in $\langle S \rangle$ can be expressed as a linear combination of vectors from S in a unique way.
- (2) No vector from S can be expressed as linear combination of the other vectors from S.
- (3) The only way to express 0 as a linear combination of vectors from S is to have all coefficients equal to 0.
- (4) All the columns of the RREF of the matrix that has as columns the coordinates of the vectors of S, are pivot.

Definition 4. A set of vectors in \mathbb{R}^n is called *linearly independent* if one (and hence all) of the conditions in Proposition 3 holds. As set that is not linearly independent is called *linealy dependent*.

Example 5. In \mathbb{R}^4 , the set *S* from Example 1 is linearly dependent. It's subset $S' = \{\mathbf{a}_1, \mathbf{a}_2, \mathbf{a}_3 \text{ is linearly independent.}\}$

Example 6. In \mathbb{R}^3 , the set *B* from Example 2 is linearly independent.

Example 7. In \mathbb{R}^4 , the vectors $\mathbf{u} = (2, 3, 1, 0)$, $\mathbf{v} = (0, -1, 0, -2)$, and $\mathbf{w} = (0, 0, 0, 1)$ form a linearly independent set.

Indeed, the matrix that has these vectors as columns is:

$$\begin{pmatrix} 2 & 0 & 0 \\ 3 & -1 & 0 \\ 4 & 0 & 0 \\ 0 & -2 & 1 \end{pmatrix}$$
$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$$

Notice that every column contains a leading 1.

Example 8. In \mathbb{R}^3 , the set $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ where $\mathbf{v}_1 = (3, 4, 5)$, $\mathbf{v}_2 = (2, 9, 2)$, and $\mathbf{v}_3 = (4, 18, 4)$ is linearly dependent.

Indeed we get the matrix:

/3	2	4
4	9	18
$\begin{pmatrix} 4\\ 5 \end{pmatrix}$	2	4/
`		/
/1	0	0)
$\begin{pmatrix} 1 \\ 0 \end{pmatrix}$	1	$\begin{pmatrix} 0\\2 \end{pmatrix}$
		<u>_</u>]
10	0	U/

with RREF

and its RREF is

Notice that the third row is not pivot.

NIKOS APOSTOLAKIS

1.1. Exercises.

(1) Complete all the details in this section

2. Basis and Dimension

Definition 9. A subset B of a linear subspace V of \mathbb{R}^n is called a *basis* of V, if the following two conditions hold:

- B spans V, in other words, $\langle B \rangle = V$
- *B* is linearly independent.

Example 10. The *basic vectors* $\mathbf{i}, \mathbf{j}, \mathbf{k}$ are called basic because they form a basis of \mathbb{R}^3 .

- In \mathbb{R}^2 the vectors $\mathbf{i} = \mathbf{e}_1 = (1,0)$ and $\mathbf{j} = \mathbf{e}_2 = (0,1)$ form a basis of \mathbb{R}^2 . This basis is called the *standard basis* of \mathbb{R}^2 .
- In \mathbb{R}^3 the vectors $\mathbf{i} = \mathbf{e}_1 = (1, 0, 0)$, $\mathbf{j} = \mathbf{e}_2 = (0, 1, 0)$, and $\mathbf{k} = \mathbf{e}_3 = (0, 0, 1)$ form a basis of \mathbb{R}^3 . This basis is called the *standard basis* of \mathbb{R}^3 .
- In \mathbb{R}^4 the vectors $\mathbf{e}_1 = (1, 0, 0, 0)$, $\mathbf{e}_2 = (0, 1, 0, 0)$, $\mathbf{e}_3 = (0, 0, 1, 0)$, and $\mathbf{e}_4 = (0, 0, 0, 1)$ form a basis of \mathbb{R}^4 . This basis is called the standard basis of \mathbb{R}^4 .
- In general, in \mathbb{R}^n the vectors \mathbf{e}_i , i = 1, 2, ..., n form a basis of \mathbb{R}^n . The vector \mathbf{e}_i has all coordinates but the *i*th equal to 0 and the *i*th coordinate equal to 1. This basis is called the *standard basis* of \mathbb{R}^n .

In general a subspace will have infinitely many bases. We've already seen a basis of \mathbb{R}^3 different than the standard one in Example 2. Indeed in that example $\langle B \rangle = \mathbb{R}^3$ and B is linearly independent. Notice that B has three vectors, as many as the standard basis. This is more generally true, and it means that the *dimension* of \mathbb{R}^3 is 3.

Proposition 11. For any subspace V of \mathbb{R}^n we have:

- V has a basis.
- All bases of the same subspace have the same number of vectors.

Definition 12. The number of vectors in a basis of a subspace V is called the *dimension* of the subspace.

Example 13. The dimension of \mathbb{R}^n is n.

Example 14. Let $V = \langle S \rangle$, the linear span of the set S in Example 1. We show in Example 1 that $\{\mathbf{a}_1, \mathbf{a}_2, \mathbf{a}_3\}$ spans V, and from Example 5 we know that it is linearly independent. So dim V = 3.

In general it turns out that:

Proposition 15. Let $S = {\mathbf{v}_1, \ldots, \mathbf{v}_k}$ be a finite subset of \mathbb{R}^n . Then the dimension of $\langle S \rangle$ equals the rank of the matrix whose columns are the vectors of S. Actually the vectors of S that correspond to the pivot columns of the RREF of the matrix form a basis of $\langle S \rangle$.

4

Example 16. In \mathbb{R}^4 consider the set $S = \{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \mathbf{v}_4, \mathbf{v}_5\}$, where $\mathbf{v}_1 = (1, 1, 2, 1)$, $\mathbf{v}_2 = (2, 2, 4, 2)$, $\mathbf{v}_3 = (2, 0, -1, 1)$, $\mathbf{v}_4 = (7, 1, -1, 4)$, and $\mathbf{v}_5 = (0, 2, 5, 1)$.

The RREF of the matrix $[\mathbf{v}_1 \, \mathbf{v}_2 \, \mathbf{v}_3 \, \mathbf{v}_4 \, \mathbf{v}_5]$ is

$$\begin{pmatrix}
1 & 2 & 0 & 1 & 2 \\
0 & 0 & 1 & 3 & -1 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{pmatrix}$$

So a basis of $\langle S \rangle$ is $\{\mathbf{v}_1, \mathbf{v}_3\}$ and dim $\langle S \rangle = 2$.

Question 17. What about the *zero-subspace*, i.e. the subspace that contains only **0** the zero vector? What is its dimension? Does it even have a basis?

Answer. This is actually a subtle issue. It turns out that it is logically consistent to posit that the empty set \emptyset is a basis of $\{0\}$. So dim $\{0\} = 0$. \Box

Definition 18. If *B* is a basis of a subspace *V* then every vector $\mathbf{v} \in V$ can be written uniquely as a linear combination of elements of *B*. The coefficients of this linear combination are called the *coordinates of* \mathbf{v} with respect to the basis *B*

Example 19. The coordinates of a vector in \mathbb{R}^n are actually its coordinates with respect to the standard basis of \mathbb{R}^n .

Example 20. This refers to Example 1. The coordinates of \mathbf{a}_3 with respect to the basis $\{\mathbf{a}_1, \mathbf{a}_2, \mathbf{a}_4\}$ are (-1, 2, 0) and the coordinates of \mathbf{a}_5 with respect to the same basis are (3, -1, -2).

2.1. Exercises.

- (1) Complete all the details in this section.
- (2) Find the coordinates of the vector $2\mathbf{i} 3\mathbf{j} + \mathbf{k}$ with respect to the basis of \mathbb{R}^3 given in Example 2.

2.2. **Project: Homogenuous Systems.** A linear system where all constants are 0, in other words a system of the form $A\mathbf{x} = \mathbf{0}$ is called a *homogeneous* system.

- (1) Prove that a homogeneous system is always consistent.
- (2) Let N be the solution set of an $m \times n$ homogeneous system. Prove that N is a linear subspace of \mathbb{R}^n .
- (3) Prove that the columns of A that correspond to the free variables form a basis for N. What that means if there are no free variables?
- (4) Conclude that the dimension of N is equal to n r where r is the rank of A.
- (5) Prove that if **p** is any solution of the system $A\mathbf{x} = \mathbf{b}$, where **b** is vector in \mathbb{R}^n , then the solution set of the system is

$$S = \{\mathbf{p} + \mathbf{v} : \mathbf{v} \in N\}$$