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1. Linear independence

Example 1. Recall the set S = {ai : i = 1, . . . , 5} ⊂ R
4 of the last two

lectures, where

a1 = (1, 1, 3, 1)

a2 = (2, 1, 2,−1)

a3 = (7, 3, 5,−5)

a4 = (1, 1,−1, 2)

a5 = (−1, 0, 9, 0)

We want to look at 〈S〉 in more detail. The question whether a given
vector b ∈ R

4 is in 〈S〉 reduces to solving the vector equation

x1a1 + x2a2 + x3a3 + x4a4 + x5a5 = b

which in turn reduces to solving the system of linear equations:

Ax = b

where A is the coefficient matrix of the system.
Last time we saw that the RREF of A is the matrix:









1 0 −1 0 3

0 1 4 0 −1

0 0 0 1 −2
0 0 0 0 0









which has rank 3. So if the system is consistent, the solution set of the system
has two parameters (or degrees of freedom) coming from the free variables x3
and x5 that correspond to the non-pivot columns. We can write the solution
set in parametric form as:

x1 = b′1 + s− 3t

x2 = b′2 − 4s+ t

x3 = s

x4 = b′4 + 2t

x5 = t
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where b′
i
, i = 1, 2, 4 are the entries of the last column of the RREF of the

augmented matrix of the system.
This means, that if a vector b is in 〈S〉 then it can be written as a linear

combination of elements from S in ifinitely many ways: just chose arbitrary
real values for s and t, any such choice gives a way to write b as a linear
combination of elements of S.

Now, one particular choice of the parameters is s = t = 0. We get

b = b′1a1 + b′2a2 + b′4a4

So, any vector that is in 〈S〉 can actually be written as a linear combination
of only a1,a2,a4. In other words, 〈S〉 = 〈a1,a2,a3〉.

Furthermore, the coefficients b′
1
, b′

2
, b′

4
are uniquely determined1. So any

vector in 〈S〉 can be written as a linear combination of a1,a2,a4 in a unique
way.

Now since the “superfluous” vectors a3,a5 are in 〈S〉, we can express them
as linear combination of ai, i = 1, 2, 4. Indeed we have:

a3 = −a1 + 4a2

and

a5 = 3a1 − a2 − 2a4

In sum: the set S contains “superfluous” vectors, that are already linear
combinations of the other vectors in S. If a vector can be expressed at all,
as a linear combination of vectors from S, it can be expressed in infinitely
many ways. When we remove the “superfluous” vectors a3, and a5 from S,
the remaining vectors span the same subspace. Now however, a vector in
that subspace can be expressed uniquely as a linear combination of a1,a2,a4.

Example 2. Now let’s look at the last problem from the homework. We
now have the set B = {(1, 1, 1), (1, 1, 0), (1, 0,−1) in R

3. When we set up
the system that decides whether a given vector b is in 〈B〉 we have:

Ax = b

where,

A =





1 1 1
1 1 0
1 0 −1





The RREF of the coefficient matrix is now:




1 0 0
0 1 0
0 0 1





This means that for any b the system has a unique solution. So any vector in
R
3 can be written as as a linear combination of vectors from B, in a unique

way.

1Why?
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Proposition 3. For a set of vectors S in a Euclidean space R
n the following

conditions are all equivalent (in other words if one of the conditions holds
they all hold):

(1) Any vector in 〈S〉 can be expressed as a linear combination of vectors
from S in a unique way.

(2) No vector from S can be expressed as linear combination of the other
vectors from S.

(3) The only way to express 0 as a linear combination of vectors from S

is to have all coefficients equal to 0.
(4) All the columns of the RREF of the matrix that has as columns the

coordinates of the vectors of S, are pivot.

Definition 4. A set of vectors in R
n is called linearly independent if one

(and hence all) of the conditions in Proposition 3 holds. As set that is not
linearly independent is called linealy dependent.

Example 5. In R
4, the set S from Example 1 is linearly dependent. It’s

subset S′ = {a1,a2,a3 is linearly independent.

Example 6. In R
3, the set B from Example 2 is linearly independent.

Example 7. In R
4, the vectors u = (2, 3, 1, 0), v = (0,−1, 0,−2), and

w = (0, 0, 0, 1) form a linearly independent set.
Indeed, the matrix that has these vectors as columns is:









2 0 0
3 −1 0
4 0 0
0 −2 1









and its RREF is








1 0 0
0 1 0
0 0 1
0 0 0









Notice that every column contains a leading 1.

Example 8. In R
3, the set {v1,v2,v3} where v1 = (3, 4, 5)), v2 = (2, 9, 2),

and v3 = (4, 18, 4) is linearly dependent.
Indeed we get the matrix:





3 2 4
4 9 18
5 2 4





with RREF




1 0 0
0 1 2
0 0 0





Notice that the third row is not pivot.
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1.1. Exercises.

(1) Complete all the details in this section

2. Basis and Dimension

Definition 9. A subset B of a linear subspace V of Rn is called a basis of
V , if the following two conditions hold:

• B spans V , in other words, 〈B〉 = V

• B is linearly independent.

Example 10. The basic vectors i, j,k are called basic because they form a
basis of R3.

• In R
2 the vectors i = e1 = (1, 0) and j = e2 = (0, 1) form a basis of

R2. This basis is called the standard basis of R2.
• In R

3 the vectors i = e1 = (1, 0, 0), j = e2 = (0, 1, 0), and k = e3 =
(0, 0, 1) form a basis of R3. This basis is called the standard basis of
R
3.

• In R
4 the vectors e1 = (1, 0, 0, 0), e2 = (0, 1, 0, 0), e3 = (0, 0, 1, 0),

and e4 = (0, 0, 0, 1) form a basis of R4. This basis is called the
standard basis of R4.

• In general, in R
n the vectors ei, i = 1, 2, . . . , n form a a basis of Rn.

The vector ei has all coordinates but the ith equal to 0 and the ith
coordinate equal to 1. This basis is called the standard basis of Rn.

In general a subspace will have infinitely many bases. We’ve already seen
a basis of R3 different than the standard one in Example 2. Indeed in that
example 〈B〉 = R

3 and B is linearly independent. Notice that B has three
vectors, as many as the standard basis. This is more generally true, and it
means that the dimension of R3 is 3.

Proposition 11. For any subspace V of Rn we have:
• V has a basis.
• All bases of the same subspace have the same number of vectors.

Definition 12. The number of vectors in a basis of a subspace V is called
the dimension of the subspace.

Example 13. The dimension of Rn is n.

Example 14. Let V = 〈S〉, the linear span of the set S in Example 1. We
show in Example 1 that {a1,a2,a3} spans V , and from Example 5 we know
that it is linearly independent. So dimV = 3.

In general it turns out that:

Proposition 15. Let S = {v1, . . . ,vk} be a finite subset of Rn. Then the
dimension of 〈S〉 equals the rank of the matrix whose columns are the vectors
of S. Actually the vectors of S that correspond to the pivot columns of the
RREF of the matrix form a basis of 〈S〉.
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Example 16. In R
4 consider the set S = {v1,v2,v3,v4,v5}, where v1 =

(1, 1, 2, 1), v2 = (2, 2, 4, 2), v3 = (2, 0,−1, 1), v4 = (7, 1,−1, 4), and v5 =
(0, 2, 5, 1).

The RREF of the matrix [v1 v2 v3 v4 v5] is








1 2 0 1 2

0 0 1 3 −1
0 0 0 0 0
0 0 0 0 0









So a basis of 〈S〉 is {v1,v3} and dim 〈S〉 = 2.

Question 17. What about the zero-subspace, i.e. the subspace that contains
only 0 the zero vector? What is its dimension? Does it even have a basis?

Answer. This is actually a subtle issue. It turns out that it is logically
consistent to posit that the empty set ∅ is a basis of {0}. So dim{0} = 0. �

Definition 18. If B is a basis of a subspace V then every vector v ∈ V

can be written uniquelly as a linear combination of elements of B. The
coefficients of this linear combination are called the coordinates of v with
respect to the basis B

Example 19. The coordinates of a vector in R
n are actually its coordinates

with respect to the standard basis of Rn.

Example 20. This refers to Example 1. The coordinates of a3 with respect
to the basis {a1,a2,a4} are (−1, 2, 0) and the coordinates of a5 with respect
to the same basis are (3,−1,−2).

2.1. Exercises.

(1) Complete all the details in this section.
(2) Find the coordinates of the vector 2i − 3j + k with respect to the

basis of R3 given in Example 2.

2.2. Project: Homogenuous Systems. A linear system where all con-
stants are 0, in other words a system of the form Ax = 0 is called a homo-
geneous system.

(1) Prove that a homogeneous system is always consistent.
(2) Let N be the solution set of an m × n homogeneous system. Prove

that N is a linear subspace of Rn.
(3) Prove that the columns of A that correspond to the free variables

form a basis for N . What that means if there are no free variables?
(4) Conclude that the dimension of N is equal to n − r where r is the

rank of A.
(5) Prove that if p is any solution of the system Ax = b, where b is

vector in R
n, then the solution set of the system is

S = {p+ v : v ∈ N}

.
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