MTH 35, SPRING 2017

NIKOS APOSTOLAKIS

1. Recall from last time

Upper triangular matrices.

Definition 1. An $n \times n$ matrix A is called upper triangular if all the entries below the main diagonal are 0 . In other words, if $i>j$ then $a_{i j}=0$.

Examples:

Example 2. The following 4×4 matrix is upper triangular

$$
\left(\begin{array}{cccc}
1 & 2 & -4 & 1 \\
0 & 3 & 2 & 7 \\
0 & 0 & 2 & -2 \\
0 & 0 & 0 & -3
\end{array}\right)
$$

Example 3. The following 4×4 matrix is not upper triangular:

$$
\left(\begin{array}{cccc}
0 & 2 & 1 & -2 \\
1 & 0 & 2 & 3 \\
0 & 2 & 1 & 1 \\
5 & -3 & 0 & 0
\end{array}\right)
$$

The determinant of an UT matrix is very easy to calculate:
Proposition 4. The determinant of an UT matrix equals the product of its diagonal entries. In other words, if A is UT then

$$
|A|=a_{11} a_{22} \cdots a_{n n}
$$

For example the determinant of the matrix in Example 2 above is $1 \cdot 3$. $2 \cdot(-3)=-18$.

We can use the above result to calculate determinants, for all matrices: even if a matrix is not UT we can turn it in to UT by using row operations (defined bellow).
Row operations. We consider the following three row operations on a matrix:
(1) Interchange (swap) \mathbf{r}_{i} and r_{j}.
(2) Replace \mathbf{r}_{i} with $\lambda \mathbf{r}_{i}$, for some $\lambda \in \mathbb{R}$
(3) Add a a multiple of a row to another row, or equivalently replace the row \mathbf{r}_{j} with the sum $\lambda \mathbf{r}_{i}+\mathbf{r}_{j}$, for some $\lambda \in \mathbb{R}$.

[^0]Proposition 5. Any $n \times n$ matrix can be turned to an $U T$ matrix by using the above three row operations.

Example 6. Consider the matrix in Example 3 above.

$$
\left(\begin{array}{cccc}
0 & 2 & 1 & -2 \\
1 & 0 & 2 & 3 \\
0 & 2 & 1 & 1 \\
5 & -3 & 0 & 0
\end{array}\right)
$$

We will use a sequence of row operations to turn it into an UT matrix. First we swap the first and second row:

$$
\left(\begin{array}{cccc}
1 & 0 & 2 & 3 \\
0 & 2 & 1 & -2 \\
0 & 2 & 1 & 1 \\
5 & -3 & 0 & 0
\end{array}\right)
$$

Now want to make all the elements of the first column that are below the main diagonal 0 . In our case we need to worry only about the entry in the fourth row and first column.

We use operation 3) and add -5 times the first row to the fourt:

$$
\left(\begin{array}{cccc}
1 & 0 & 2 & 3 \\
0 & 2 & 1 & -2 \\
0 & 2 & 1 & 1 \\
0 & -3 & -10 & -15
\end{array}\right)
$$

Now we want to have all elements in the second column that are below the diagonal to be 0 . We do this by first adding -1 times the second row to the third:

$$
\left(\begin{array}{cccc}
1 & 0 & 2 & 3 \\
0 & 2 & 1 & -2 \\
0 & 0 & 0 & 3 \\
0 & -3 & -10 & -15
\end{array}\right)
$$

Now we need to make the second entry in the fourth column 0 . We do this by first multiplying the fourth by 2 (so that in the next step we'll add to it 3 times the second row):

$$
\left(\begin{array}{cccc}
1 & 0 & 2 & 3 \\
0 & 2 & 1 & -2 \\
0 & 0 & 0 & 3 \\
0 & -6 & -20 & -30
\end{array}\right)
$$

Next we add the 3 times the second row to the fourth:

$$
\left(\begin{array}{cccc}
1 & 0 & 2 & 3 \\
0 & 2 & 1 & -2 \\
0 & 0 & 0 & 3 \\
0 & 0 & -17 & -36
\end{array}\right)
$$

Finally we need to make the entry in the fourth row and third column 0. We can accomplish that by adding -17 times the second row to the fourth:

$$
\left(\begin{array}{cccc}
1 & 0 & 2 & 3 \\
0 & 2 & 1 & -2 \\
0 & 0 & 0 & 3 \\
0 & 0 & 0 & -2
\end{array}\right)
$$

And we are done.
The following proposition allows us to calculate determinants by using row operations to turn a matrix to UT.

Proposition 7. Let A be an $n \times n$ matrix, and A^{\prime} the result of applying a row operation to A. Then
(1) If the operation was a row swap then the determinant changes sign. In other words $\left|A^{\prime}\right|=-|A|$.
(2) If we multiply a row by a number λ the determinant is multiplied by that number, in other words: $\left|A^{\prime}\right|=\lambda|A|$.
(3) If we add the multiple of a row to another row the determinant stays the same, in other words $\left|A^{\prime}\right|=|A|$.

Here is an example:
Example 8. Compute the determinant of the following matrix:

$$
A=\left(\begin{array}{cccc}
2 & 0 & 2 & 3 \\
1 & 3 & -1 & 1 \\
-1 & 1 & -1 & 2 \\
3 & 5 & 4 & 0
\end{array}\right)
$$

We will transform the matrix to UT, by a sequence of row operations keeping track of the change in determinants:

We first swap the first two rows, to get a matrix A_{1} :

$$
A_{1}=\left(\begin{array}{cccc}
1 & 3 & -1 & 1 \\
2 & 0 & 2 & 3 \\
-1 & 1 & -1 & 2 \\
3 & 5 & 4 & 0
\end{array}\right)
$$

The determinant changes sign: $\operatorname{det}(A)=-\operatorname{det}\left(A_{1}\right)$
Then we add -2 times the first row to the second:

$$
A_{2}=\left(\begin{array}{cccc}
1 & 3 & -1 & 1 \\
0 & -6 & 4 & 1 \\
-1 & 1 & -1 & 2 \\
3 & 5 & 4 & 0
\end{array}\right)
$$

The determinant doesn't change: $\operatorname{det}(A)=-\operatorname{det}\left(A_{2}\right)$

Then we add the first row to the third.

$$
A_{3}=\left(\begin{array}{cccc}
1 & 3 & -1 & 1 \\
0 & -6 & 4 & 1 \\
0 & 4 & -2 & 3 \\
3 & 5 & 4 & 0
\end{array}\right)
$$

The determinant doesn't change: $\operatorname{det}(A)=-\operatorname{det}\left(A_{3}\right)$
Then we add -3 times the first row to the fourth.

$$
A_{4}=\left(\begin{array}{cccc}
1 & 3 & -1 & 1 \\
0 & -6 & 4 & 1 \\
0 & 4 & -2 & 3 \\
0 & -4 & 7 & -3
\end{array}\right)
$$

The determinant doesn't change: $\operatorname{det}(A)=-\operatorname{det}\left(A_{4}\right)$
Now we add the third row to the second:

$$
A_{5}=\left(\begin{array}{cccc}
1 & 3 & -1 & 1 \\
0 & -2 & 2 & 4 \\
0 & 4 & -2 & 3 \\
0 & -4 & 7 & -3
\end{array}\right)
$$

The determinant doesn't change: $\operatorname{det}(A)=-\operatorname{det}\left(A_{5}\right)$
Next we add 2 times the first row to the third, and -2 times the first row to the fourth.

$$
A_{7}=\left(\begin{array}{cccc}
1 & 3 & -1 & 1 \\
0 & -2 & 2 & 4 \\
0 & 0 & 2 & 11 \\
0 & 0 & 3 & -11
\end{array}\right)
$$

The determinant doesn't change: $\operatorname{det}(A)=-\operatorname{det}\left(A_{7}\right)$
Next we multiply the last row with -2 .

$$
A_{8}=\left(\begin{array}{cccc}
1 & 3 & -1 & 1 \\
0 & -2 & 2 & 4 \\
0 & 0 & 2 & 11 \\
0 & 0 & -6 & 22
\end{array}\right)
$$

The determinant is multiplied by $-2 . \operatorname{det}(A)=\frac{1}{2} \operatorname{det}\left(A_{8}\right)$
Finaly we add 3 times the third row to the fourth.

$$
A_{9}=\left(\begin{array}{cccc}
1 & 3 & -1 & 1 \\
0 & -2 & 2 & 4 \\
0 & 0 & 2 & 11 \\
0 & 0 & 0 & 55
\end{array}\right)
$$

The determinant doesn't change: This is an UT matrix and we have:

$$
\operatorname{det}(A)=\frac{1}{2} \operatorname{det}\left(A_{9}\right)=\frac{1}{2}(-2) \cdot 2 \cdot 55=-110
$$

2. SUBSPACES, SPANS, SYSTEMS

Definition 9. A subset V of \mathbb{R}^{n} is called a /linear subspace of \mathbb{R}^{n} if
(1) $\boldsymbol{0} \in V$
(2) If $\mathbf{a} \in V$ and $\lambda \in \mathbb{R}$ then $\lambda \mathbf{a} \in V$.
(3) If $\mathbf{a} \in V$ and $\mathbf{b} \in V$ then $\mathbf{a}+\mathbf{b} \in V$

Example 10. The set $V=\left\{(x, y, z) \in \mathbb{R}^{3}: x-2 y+3 z=0\right\}$ is a linear subspace.
Example 11. The set $V=\left\{(x, y, z) \in \mathbb{R}^{3}: x-2 y+3 z=2\right\}$ is not a linear subspace.
Definition 12. Let $\mathbf{a}_{1}, \mathbf{a}_{2}, \ldots, \mathbf{a}_{m}$ be vectors in a Euclidean space \mathbb{R}^{n}. The vector $\mathbf{b}=\lambda_{1} \mathbf{a}_{1}+\lambda_{2} \mathbf{a}_{2}+\ldots+\lambda_{m} \mathbf{a}_{m}$ is called the linear combination of $\mathbf{a}_{1}, \mathbf{a}_{2}, \ldots, \mathbf{a}_{m}$ with coefficients $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$.

Proposition 13. If V is a subspace of \mathbb{R}^{n} and $\mathbf{a}_{1}, \mathbf{a}_{2}, \ldots, \mathbf{a}_{m} \in V$ then any linear combination of $\mathbf{a}_{1}, \mathbf{a}_{2}, \ldots, \mathbf{a}_{m}$ is in V.
Definition 14. Let $S=\left\{\mathbf{a}_{1}, \mathbf{a}_{2}, \ldots, \mathbf{a}_{m}\right\}$ be a set of vectors in \mathbb{R}^{n}. The span of S is the set of all possible linear combinations of $\mathbf{a}_{1}, \mathbf{a}_{2}, \ldots, \mathbf{a}_{m}$. In symbols:

$$
\langle S\rangle=\left\langle\mathbf{a}_{1}, \mathbf{a}_{2}, \ldots, \mathbf{a}_{m}\right\rangle=\left\{\lambda_{1} \mathbf{a}_{1}+\lambda_{2} \mathbf{a}_{2}+\ldots+\lambda_{m} \mathbf{a}_{m}: \lambda_{i} \in \mathbb{R}, 1 \leq i \leq m\right\}
$$

Proposition 15. For any set of vectors S of $\mathbf{R}^{n},\langle S\rangle$ is a linear subspace of \mathbb{R}^{n}.
Example 16. The span of $\{\mathbf{0}\}$ is the zero-subspace.
Example 17. The span of $\{\mathbf{a}\}$ where $\mathbf{a} \neq \mathbf{0}$ is the line through the origin determined by a.

What about the span of two vectors? It's either a line or a plane.
Example 18. If $\mathbf{a}=\mathbf{i}-\mathbf{j}$ and $\mathbf{b}=\mathbf{j}+\mathbf{k}$ then $\langle\mathbf{a}, \mathbf{b}\rangle$ is a plane.
Example 19. If however, $\mathbf{a}=\mathbf{i}-\mathbf{j}+\mathbf{k}$ and $\mathbf{b}=2 \mathbf{i}-2 \mathbf{j}+2 \mathbf{k}$ then $\langle\mathbf{a}, \mathbf{b}\rangle$ is a actually a line, namely the same as $\langle\mathbf{a}\rangle$. This is so because $\mathbf{b}=2 \mathbf{a}$, so any linear combination of \mathbf{a} and \mathbf{b} is actually just a multiple of \mathbf{a}.

We now have the basic question:
Question 20. When is a given vector \mathbf{b} in the span of a set of vectors S ?
Example 21. In \mathbb{R}^{4} consider the set $S=\left\{\mathbf{a}_{1}, \mathbf{a}_{2}, \mathbf{a}_{3}, \mathbf{a}_{4}, \mathbf{a}_{5}\right\}$ where, $\mathbf{a}_{1}=(1,1,3,1), \mathbf{a}_{2}=(2,1,2,-1), \mathbf{a}_{3}=(7,3,5,-5), \mathbf{a}_{4}=(1,1,-1,2), \mathbf{a}_{5}=$ ($-1,0,9,0$)

Are the vectors $\mathbf{w}=(-4,2,28,10)$, and $\mathbf{u}=(3,1,2,-1)$ in $\langle S\rangle$?
Let's do \mathbf{w} first. We need to solve the following vector equation:

$$
\mathbf{w}=x_{1} \mathbf{a}_{\mathbf{1}}+x_{2} \mathbf{a}_{\mathbf{2}}+x_{3} \mathbf{a}_{\mathbf{3}}+x_{4} \mathbf{a}_{\mathbf{4}}+x_{5} \mathbf{a}_{\mathbf{5}}
$$

for real numbers $x_{1}, x_{2}, x_{3}, x_{4}$.

This translates to a system:

$$
\left\{\begin{array}{lr}
x_{1}+2 x_{2}+7 x_{3}+x_{4}-x_{5} & =-4 \\
x_{1}+x_{2}+3 x_{3}+x_{4} & =2 \\
3 x_{1}+2 x_{2}+5 x_{3}-x_{4}+9 x_{5} & =28 \\
x_{1}-x_{2}-5 x_{3}+2 x_{4} & =10
\end{array}\right.
$$

which has solution $x_{1}=2, x_{2}=1, x_{3}=-1, x_{4}=2, x_{5}=3$. So \mathbf{w} is in $\langle S\rangle$.

For \mathbf{u} on the other hand we get the system

$$
\left\{\begin{array}{lr}
x_{1}+2 x_{2}+7 x_{3}+x_{4}-x_{5} & =3 \\
x_{1}+x_{2}+3 x_{3}+x_{4} & =1 \\
3 x_{1}+2 x_{2}+5 x_{3}-x_{4}+9 x_{5} & =2 \\
x_{1}-x_{2}-5 x_{3}+2 x_{4} & =-1
\end{array}\right.
$$

which is incosistent. So \mathbf{u} is not in $\langle S\rangle$.

3. Next Time

Solving systems of linear equations.

(1) We can interchange two equations.
(2) We can multiply any equation by a scalar.
(3) We can add to an equation the scalar multiple of another.

Reduced Row Echelon Form. Lea M be an $m \times n$ matrix. We can consider M as a row of column vectors or a column of row vectors.

Definition 22. A matrix is in Reduced Row-Echelon Form (or in short Echelon Form) when the following conditions are met:
(1) If there is a row where every entry is 0 then this row is bellow any row that contains non-zero entries.
(2) The leftmost non-zero entry of a row is 1 .
(3) The leftmost non-zero entry of any row is the only non-zero entry in its column.
(4) If $m_{i j}$ and $m_{s t}$ are two leftmost non-zero entries in their rows then if $s>i$ then $t>j$. In other words, the leftmost non-zero entry of a row, is to the right of the leftmost non-zero entry of any row below it.

Terminology: The leftmost non-zero entry of a row in RREF is called the leading 1. A column that contains a leading 1 is called a pivot column. The number of non-zero rows (which equals the number of leading 1's, and also the number of pivot columns) is called the rank of the matrix and is denoted by $r(M)$, or when the matrix is understood simply by r.

Example 23. The 5×8 matrix

$$
\left(\begin{array}{cccccccc}
1 & -3 & 0 & 6 & 0 & 0 & -5 & 9 \\
0 & 0 & 0 & 0 & 1 & 0 & 3 & -7 \\
0 & 0 & 0 & 0 & 0 & 1 & 7 & 3 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

is in RREF. It has three non-zero rows, $\mathbf{r}_{1}, \mathbf{r}_{2}$, and \mathbf{r}_{3}. So it's rank is $r=3$.
Example 24. The 6×9 matrix

$$
\left(\begin{array}{ccccccccc}
1 & 0 & -3 & 0 & 6 & 0 & 7 & -5 & 9 \\
0 & 0 & 0 & 5 & 0 & 1 & 0 & 3 & -7 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & -4 & 2 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 7 & 3 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

is not in RREF. In fact it fails all the requirements listed above.
RREF is very usefull as we will keep seen. For one, if we have a matrix in RREF it's very easy to calculate its determinant. Also a system whose matrix is in RREF is very easy to solve.

Proposition 25. Any matrix can be turned into RREF using row operations.

[^0]: Date: February 14, 2017.

