## Spring 2017

Nikos Apostolakis

## 1 The six trigonometric functions

Given a right triangle, once we select one of its acute angles $\theta$, we can describe the sides as $O$ (opposite of $\theta$ ), $A$ (adjacent to $\theta$ ), and $H$ (hypotenuse). There are six possible ways to divide one of the sides by an other side, and each of these ratios has a name:

## Table 1: $\quad$ The six trigonometric functions of $\theta$

| Name of function | Abbreviation | Definition <br> $\operatorname{sine} \theta$ |
| ---: | :--- | :--- |
| $\sin \theta$ | $=\frac{\text { opposite side }}{\text { hypotenuse }}$ | $=\frac{O}{H}$ |
| $\operatorname{cosine} \theta$ | $=\frac{\text { adjacent side }}{\text { hypotenuse }}$ | $=\frac{A}{H}$ |
| $\operatorname{tangent} \theta$ | $=\frac{\text { opposite side }}{\text { adjacent side }}$ | $=\frac{O}{A}$ |
| $\operatorname{cosecant} \theta$ | $\tan \theta$ | $=\frac{\text { hypotenuse }}{\text { opposite side }}$ |
| secant $\theta$ | $=\frac{H}{O}$ |  |
| cotangent $\theta$ | $\sec \theta$ | $=\frac{\text { hypotenuse }}{\text { adjacent side }}=\frac{H}{A}$ |
| opposite side | $=\frac{A}{O}$ |  |

All these ratios are not independent of each other. If we know one of them we can figure out the rest.

Example 1. The acute angle $\theta$ as $\sin \theta=\frac{3}{5}$. Find $\cos \theta, \tan \theta, \cot \theta, \sec \theta$, and $\csc \theta$.
Answer. We can use any right triangle that has an angle with $\sin \theta=\frac{3}{5}$ to calculate the other trig functions. If we have a right triangle with hypotenuse $H=5$, and the leg opposite to $\theta$ to be $O=3$, then $\sin \theta=\frac{O}{H}=\frac{3}{5}$. Such a triangle is shown below:


Using the Pythagorean Theorem we can calculate:

$$
x^{2}=5^{2}-3^{2}=16 \Longrightarrow x=4
$$

So we have all three sides and we can calculate:

$$
\begin{aligned}
\cos \theta & =\frac{4}{5} \\
\tan \theta & =\frac{3}{4} \\
\cot \theta & =\frac{4}{3} \\
\sec \theta & =\frac{5}{4} \\
\csc \theta & =\frac{5}{3}
\end{aligned}
$$

Example 2. An acute angle $\theta$ has $\tan \theta=\frac{\sqrt{6}}{2}$. Find the other trigonometric ratios of $\theta$. Answer. The angle $\theta$ in the following triangle has tangent equal to $\frac{\sqrt{6}}{2}$.


Using the Pythagorean theorem we can calculate:

$$
x^{2}=(\sqrt{6})^{2}+2^{2} \Longrightarrow x^{2}=10 \Longrightarrow x=\sqrt{10}
$$

So we have:

$$
\begin{aligned}
& \sin \theta=\frac{\sqrt{6}}{\sqrt{10}}=\frac{\sqrt{60}}{10}=\frac{2 \sqrt{15}}{10}=\frac{\sqrt{15}}{5} \\
& \cos \theta=\frac{2}{\sqrt{10}}=\frac{2 \sqrt{10}}{10}=\frac{\sqrt{10}}{5} \\
& \cot \theta=\frac{2}{\sqrt{6}}=\frac{2 \sqrt{6}}{6}=\frac{\sqrt{6}}{3} \\
& \sec \theta=\frac{\sqrt{10}}{2} \\
& \csc \theta=\frac{\sqrt{10}}{\sqrt{6}}=\frac{\sqrt{60}}{6}=\frac{2 \sqrt{15}}{6}=\frac{\sqrt{15}}{3}
\end{aligned}
$$

## 2 Exercises

1. Find the values of the other five trigonometric ratios of the acute angle $\theta$ given the indicated value of one of the ratios.
(a) $\sin \theta=\frac{3}{4}$
(b) $\cos \theta=\frac{2}{3}$
(c) $\cos \theta=\frac{\sqrt{10}}{5}$
(d) $\sin \theta=\frac{2}{4}$
(e) $\tan \theta=\frac{5}{9}$
(f) $\tan \theta=3$
(g) $\sec \theta=\frac{7}{3}$
(h) $\csc \theta=3$

## 3 Solving right triangles

A triangle has three sides and three angles a total of six unknown quantities. To solve a triangle means to find the measurements of all its sides and all its angles.

Example 3. In a right triangle $A B C$, with $C=90^{\circ}$, we have $a=\sqrt{3}$ units and $c=2$ units. Solve this triangle.

Answer. First recall the convention that when we name the corners and the sides of a triangle we use upper case letters for the corners and then we name each side with the lower case letter of the corner opposite it. So in our triangle $c$ is the side opposite to $C$, and $a$ is opposite the corner $A$. So we have the following:


Using the Pythagorean theorem we can calculate:

$$
b^{2}+(\sqrt{3})^{2}=2^{2} \Longrightarrow b^{2}=4-3 \Longrightarrow b^{2}=1 \Longrightarrow b=1
$$

So we have $\sin B=\frac{1}{2} \Longrightarrow B=30^{\circ}$ Then $A=90^{\circ}-30^{\circ} \Longrightarrow A=60^{\circ}$

In this example we made use of the fact that we know that the sine of $30^{\circ}$ is $\frac{1}{2}{ }^{1}$. What would we have done if we didn't get a sine that we recognize? Well, that's what calculators are for! All scientific calculators have buttons labeled $\sin ^{-1}$ (as well as $\cos ^{-1}$, and $\tan ^{-1}$ ). These buttons give you what angle has a given sine. For example, I can use the builtin calculator in my editor to find:

$$
\sin ^{-1} 0.83 \approx 56.0987380031
$$

[^0]This means that the angle that has sine 0.83 is (approximately) $56.0987380031^{\circ}$. Usually in the class we round to the nearest hundredth (i.e. the second decimal place), so if we need to use an angle that has sine .83 we will use $56.1^{\circ}$.

Example 4. Find $\theta$ in the triangle below:


Answer. We have from the figure that

$$
\tan \theta=\frac{3}{2}
$$

Using our calculator we get:

$$
\tan ^{-1} \frac{3}{2}=56.309932474
$$

Rounding to the nearest hundredth, we have $\theta \approx 56.3^{\circ}$.
Example 5. In a right triangle $A B C$ with $C=90^{\circ}$ we have that $b=4$ and $B=28^{\circ}$. Solve the triangle.

Answer. Such a triangle is shown below:


We have that $A=90^{\circ}-28^{\circ}=62^{\circ}$.
We can calculate $b$ using $\tan 28^{\text {circ }}=\frac{b}{4}$. The calculator gives $\tan 28^{\circ} \approx 0.53$. So

$$
\frac{b}{4}=0.53 \Longrightarrow b=2.12
$$

We also have $\cos 28^{\circ}=\frac{4}{c}$. The calculator gives $\cos 28^{\circ} \approx 0.88$. So we have:

$$
\frac{4}{c}=.88 \Longrightarrow c=\frac{4}{.88} \Longrightarrow c=4.55
$$

## 4 Exercises

1. In the following figure find $a$ :

2. In a right triangle $K L M$ with $K=90^{\circ}$ have that $M=22^{\circ}$, and $k=3$. Find the lengths of $l$, $m$.
3. Solve the triangle $A B C$ where $A=90^{\circ}, B=33^{\circ}$, and $b=2.5$
4. Solve the triangle $A B C$ where $B=90^{\circ}, a=\sqrt{2}$, and $b=2$.
5. In a right triangle $A B C$ with $A=90^{\circ}$ we have $a=2$ and $b=1$. Find the angle $B$.
6. In a right triangle $A B C$ with $B=90^{\circ}$ we have that $a=2.1$, and $b=3$. Find the angle $C$.
7. In a right triangle $P Q R$ we have $P=90^{\circ}, r=5$ and $q=6$. Solve the triangle.
8. In a triangle with $A=90^{\circ}$ and $\cos B=.32$ find $\sin B$.
9. For an acute angle $\theta$ of a right triangle we have $\sin \theta=\frac{\sqrt{5}}{3}$. Find $\cos \theta$ and $\tan \theta$.
10. The acute angles of a right triangle are $\phi$ and $\theta$. If $\tan \theta=4.3$ find $\cos \phi$.

[^0]:    ${ }^{1}$ We actually cheated a bit. We assumed that if an angle has the same sine as an angle of $30^{\circ}$, then this angle must be $30^{\circ}$. That turns out to be true: if two acute angles have the same sine then they are equal

