Simplifying Radical Expressions

Nikos Apostolakis

1 Radical expressions

1. For which real values of the variable x are the following radical expressions defined as real numbers?

- (a) \sqrt{x}
- (b) $\sqrt{-x}$
- (c) $\sqrt{3x-2}$
- (d) $\sqrt{6-2x}$
- (e) $\sqrt{3(x-5)+x}$
- (f) $\sqrt{x^2}$
- (g) $\sqrt{x^2 + 1}$
- (h) $\sqrt{-x^2}$
- (i) $\sqrt{x^2 4}$
- (j) $\sqrt{x^2 + 2x + 1}$
- 2. Simplify each of the following radical expressions if the variables represent arbitrary real numbers. Can you simplify further if you assume that all the variables represent non negative numbers?
 - (a) $\sqrt{z^2}$
 - (b) $\sqrt{y^8}$
 - (c) $\sqrt{x^3}$
 - (d) $\sqrt{4x^2y^4}$
 - (e) $\sqrt{50x^3y^5z^7}$
 - (f) $\sqrt{\frac{48x^5y^2}{81z^4}}$

(g)
$$\sqrt{\frac{72x^4y}{45z^8}}$$

- 3. Simplify each of the following expressions. Assume all variables represent positive numbers.
 - (a) $\sqrt[3]{8x^5y^6}$
 - (b) $\sqrt[4]{32x^4y^5z^{13}}$
 - (c) $\sqrt[3]{x}$
 - (d) $\sqrt{\sqrt{x^2 z^6}}$
 - (e) $\sqrt{50\sqrt{4xy^4}}$
- 4. Rationalize the denominator. Assume that all expressions are defined.

(a)
$$\frac{3}{4+\sqrt{2}}$$

(b)
$$\frac{\sqrt{3}}{\sqrt{3}-5}$$

(c)
$$\frac{2\sqrt{6}}{4-\sqrt{2}}$$

(d)
$$\frac{1}{\sqrt{3} - \sqrt{5}}$$

(e)
$$\frac{\sqrt{10}}{2\sqrt{5} + 3\sqrt{2}}$$

(f)
$$\frac{3}{1 - \sqrt{x}}$$

(g)
$$\frac{\sqrt{30x}}{x - 2\sqrt{3}}$$

(h)
$$\frac{\sqrt{a} - \sqrt{b}}{\sqrt{a} + \sqrt{b}}$$

(i)
$$\frac{h}{\sqrt{x + h} - \sqrt{x}}$$

- 5. Verify that:
 - (a) $\sqrt{11 6\sqrt{2}} = 3 \sqrt{2}$
 - (b) $\sqrt{21 4\sqrt{5}} = 2\sqrt{5} 1$
- 6. Verify that $x = 2 \sqrt{3}$ is a solution to the following equation:

$$x^2 - 4x + 1 = 0$$

7. Verify that $3 + \sqrt{2}$ is a solution to the equation

$$x^3 - 7x^2 + 13x - 7 = 0$$