Simplifying Radical Expressions

Nikos Apostolakis

1 Radical expressions

1. For which real values of the variable x are the following radical expressions defined as real numbers?
(a) \sqrt{x}
(b) $\sqrt{-x}$
(c) $\sqrt{3 x-2}$
(d) $\sqrt{6-2 x}$
(e) $\sqrt{3(x-5)+x}$
(f) $\sqrt{x^{2}}$
(g) $\sqrt{x^{2}+1}$
(h) $\sqrt{-x^{2}}$
(i) $\sqrt{x^{2}-4}$
(j) $\sqrt{x^{2}+2 x+1}$
2. Simplify each of the following radical expressions if the variables represent arbitrary real numbers. Can you simplify further if you assume that all the variables represent non negative numbers?
(a) $\sqrt{z^{2}}$
(b) $\sqrt{y^{8}}$
(c) $\sqrt{x^{3}}$
(d) $\sqrt{4 x^{2} y^{4}}$
(e) $\sqrt{50 x^{3} y^{5} z^{7}}$
(f) $\sqrt{\frac{48 x^{5} y^{2}}{81 z^{4}}}$
(g) $\sqrt{\frac{72 x^{4} y^{3}}{45 z^{8}}}$
3. Simplify each of the following expressions. Assume all variables represent positive numbers.
(a) $\sqrt[3]{8 x^{5} y^{6}}$
(b) $\sqrt[4]{32 x^{4} y^{5} z^{13}}$
(c) $\sqrt{\sqrt[3]{x}}$
(d) $\sqrt{\sqrt{x^{2} z^{6}}}$
(e) $\sqrt{50 \sqrt{4 x y^{4}}}$
4. Rationalize the denominator. Assume that all expressions are defined.
(a) $\frac{3}{4+\sqrt{2}}$
(b) $\frac{\sqrt{3}}{\sqrt{3}-5}$
(c) $\frac{2 \sqrt{6}}{4-\sqrt{2}}$
(d) $\frac{1}{\sqrt{3}-\sqrt{5}}$
(e) $\frac{\sqrt{10}}{2 \sqrt{5}+3 \sqrt{2}}$
(f) $\frac{3}{1-\sqrt{x}}$
(g) $\frac{\sqrt{30 x}}{x-2 \sqrt{3}}$
(h) $\frac{\sqrt{a}-\sqrt{b}}{\sqrt{a}+\sqrt{b}}$
(i) $\frac{h}{\sqrt{x+h}-\sqrt{x}}$
5. Verify that:
(a) $\sqrt{11-6 \sqrt{2}}=3-\sqrt{2}$
(b) $\sqrt{21-4 \sqrt{5}}=2 \sqrt{5}-1$
6. Verify that $x=2-\sqrt{3}$ is a solution to the following equation:

$$
x^{2}-4 x+1=0
$$

7. Verify that $3+\sqrt{2}$ is a solution to the equation

$$
x^{3}-7 x^{2}+13 x-7=0
$$

