Spring 2017

Nikos Apostolakis

1 Complex numbers

Recall from Elementary Algebra, that negative numbers can't possibly have square roots. Indeed if a is a real number then a^{2} is always positive or zero. Nevertheless we can investigate what happens if we introduce a new kind of numbers, called imaginary numbers with the property that when we square them we get negative numbers. So we introduced the imaginary unit, a number i that has the property

$$
i^{2}=-1
$$

and we assume that it has as many properties of the real numbers as possible. So for example, $-i$ should also make sense and we should have that also $(-i)^{2}=-1$, so that -1 has two "square roots", $\pm i$. Similarly to the case of real numbers we make the convention that $\sqrt{-1}$ stands for i.

Since i has the algebraic properties of real numbers, now we have that all negative numbers have square roots, for example:

$$
(3 i)^{2}=3^{2} i^{2}=9(-1)=-9, \quad(i \sqrt{2})^{2}=i^{2}(\sqrt{2})^{2}=-1 \cdot 2=-2
$$

In general:

If a is a positive real number then

$$
\sqrt{-a}=i \sqrt{a}
$$

Example 1. Simplify:

$$
\sqrt{-45}
$$

Answer. $\sqrt{-45}=i \sqrt{45}=3 i \sqrt{5}$
If we add or subtract two imaginary numbers we get a new imaginary number:
Example 2. $\quad 3 i+5 i=8 i, \quad 7 i-12 i=5 i$
When we multiply two imaginary numbers we get a real number:
Example 3. $\quad(2 i)(3 i)=6 i^{2}=-6, \quad(-5 i)(i \sqrt{3})=-i^{2} 5 \sqrt{3}=5 \sqrt{3}$
If we add a real number and an imaginary number we get a complex number. For example $2+3 i$ is a complex number. We can add an multiply complex numbers and the result will be a complex number.
Example 4. Here are a few examples to refresh your memory:

1. $(1-2 i)(3+5 i)=3+5 i-6 i-10 i^{2}=3-i+10=13-i$
2. $(2-3 i)(2+3 i)=4-9 i^{2}=4+9=13$
3. $(2-3 i)^{2}=4+(3 i)^{2}-12 i=4-9-12 i=-5-12 i$

To divide two complex numbers we use the technique of rationalizing the denominator that we have already seen, after all i is just a shorthand for $\sqrt{-1}$.

The conjugate of the complex number $a+b i$ is the complex number $a-b i$
Example 5. The conjugate of $5+2 i$ is $5-2 i$, the conjugate of $4-3 i$ is $4+3 i$.

Now notice what happens when we multiply tow conjugate numbers:

$$
(a+b i)(a-b i)=a^{2}-b^{2} i^{2}=a^{2}+b^{2}
$$

To divide two complex numbers, we multiply the numerator and denominator by the conjugate of the denominator.

Example 6. Divide: $\frac{2-4 i}{1+i}$
Answer.

$$
\begin{aligned}
\frac{2-4 i}{1+i} & =\frac{2-4 i}{1+i} \frac{1-i}{1-i} \\
& =\frac{2-2 i-4 i-4}{1+1} \\
& =\frac{-2-6 i}{2} \\
& =-1-3 i
\end{aligned}
$$

Example 7. Perform the division: $\frac{2+3 i}{3-4 i}$
Answer.

$$
\begin{aligned}
\frac{2+3 i}{3-4 i} & =\frac{2+3 i}{3-4 i} \frac{3+4 i}{3+4 i} \\
& =\frac{6+8 i+9 i-12}{9+16} \\
& =\frac{-6+17 i}{25} \\
& =-\frac{6}{25}+\frac{17}{25} i
\end{aligned}
$$

Powers of i. We know that $i^{2}=-1$. What about higher powers? Let's see:

$$
\begin{aligned}
i^{0} & =1 \\
i^{1} & =i \\
i^{2} & =-1 \\
i^{3} & =i^{2} \cdot i=-i \\
i^{4} & =i^{3} \cdot i=-i \cdot i=1 \\
i^{5} & =i^{4} \cdot i=1 \cdot i=i \\
i^{6} & =i^{5} \cdot i=i \cdot i=-1 \\
i^{7} & =i^{6} \cdot i=-1 \cdot i=-i \\
i^{8} & =i^{7} \cdot i=-i \cdot i=1
\end{aligned}
$$

After doing this for a while you will probably realize that there is a repeating pattern: the results cycle through $1, i,-1,-i$. This happens because $i^{4}=1$, once once we reach the fourth power it's as if we start from the beginning, so we go through i, then -1 , then $-i$, and then back to 1 , where the whole cycle will begin again. For multiples of 4 we will get 1 , if the remainder of the division by 4 is 1 , we'll get i, if the reminder is 2 will get -1 , and if the remainder is 3 we'll get $-i$.

Example 8. $i^{15}=-i$ because 15 divided by 4 leaves remainder 3. $i^{22}=-1$ because the remainder of 22 divided by 4 is 2 .

The pattern of the powers of i continues for negative exponents as well. The pattern, starting with exponent 0 is $1, i,-1,-i$ and it repeats for ever. In this pattern before 1 comes $-i$, so since the exponent -1 comes before the exponent 0 we should have $i^{-1}=-i$; since exponent -2 comes before exponent -1 and in the pattern -1 comes before $-i$ we should have $i^{-2}=-1$, and so on.

Here is the calculations that show why this is so.

$$
i^{-1}=\frac{1}{i^{1}}
$$

Now since $1+3=4$ and $i^{4}=1$ if we multiply both numerator and denominator with i^{3} we get a denominator of i^{4} which equals 1 . So:

$$
\begin{aligned}
i^{-1} & =\frac{1}{i^{1}} \\
& =\frac{1}{i^{1}} \frac{i^{3}}{i^{3}} \\
& =\frac{i^{3}}{i^{4}} \\
& =\frac{i^{3}}{1} \\
& =i^{3} \\
& =-i
\end{aligned}
$$

For i^{-2} we have:

$$
\begin{aligned}
i^{-2} & =\frac{1}{i^{2}} \\
& =\frac{1}{i^{2}} \frac{i^{2}}{i^{2}} \\
& =\frac{i^{2}}{i^{4}} \\
& =\frac{i^{2}}{1} \\
& =i^{2} \\
& =-1
\end{aligned}
$$

And for example for i^{-35} we have, since $35=4 \cdot 8+3$:

$$
\begin{aligned}
i^{-35} & =\frac{1}{i^{35}} \\
& =\frac{1}{i^{3}} \\
& =\frac{1}{i^{3}} \frac{i}{i} \\
& =\frac{i}{i^{4}} \\
& =\frac{i}{1} \\
& =i
\end{aligned}
$$

2 Exercises

1. Perform the following operations. Give your answers in the form $a+b i$ where a and b are real numbers.
(a) $\sqrt{-16}$
(b) $\sqrt{-12}+\sqrt{-20}$
(c) $\sqrt{-3}(1-\sqrt{-75})$
(d) i^{29}
(e) $-i^{10}$
(f) $2 i(7-4 i)$
(g) $\left(\frac{2}{3}+3 i\right)+\left(6-\frac{3 i}{5}\right)$
(h) $(-3+5 i)-(5-3 i)$
(i) $(4+3 i)(4-3 i)$
(j) $\left(\frac{1}{3}-\frac{3 i}{2}\right)\left(\frac{1}{3}+\frac{3 i}{2}\right)$
(k) $(2-3 i)(-5+4 i)$
(l) $(6-5 i)^{2}$
(m) $(3+5 i)^{2}$
(n) $\left(\frac{1}{\sqrt{2}}+\frac{i}{\sqrt{2}}\right)^{2}$
(o) $(2-i)^{3}$
(p) $\left(\frac{-1+i \sqrt{3}}{2}\right)^{3}$
(q) $(\sqrt{2}+i \sqrt{2})^{4}$
(r) $\frac{7}{2-3 i}$
(s) $\frac{-5+10 i}{-2+i}$
(t) $\frac{2-i}{-i}$
(u) $\frac{(3-4 i)(-1+2 i)}{2-i}$
(v) $\frac{-1-i}{2-3 i}$
2. Evaluate each of the following expressions when $z=-2+3 i$:
(a) $z^{2}+4 z$
(b) $3 z^{3}-138$
(c) $z^{3}-z^{2}-7 z-65$
(d) $\frac{3+2 i}{i z}$
(e) $-\frac{3 z^{2}}{12 i+5}$

3 Quadratic Equations

Recall that the solutions to quadratic equations with real coefficients are in general complex numbers. Indeed from the quadratic formula

$$
x=\frac{-b \pm \sqrt{D}}{2 a}, \text { where } D=b^{2}-4 a c
$$

we see that if the discriminant D is a negative number we get square roots of negative numbers.
Example 9. Solve $x^{2}-4 x+13=0$
Answer. We have $D=(-4)^{2}-4 * 1 * 13=16-52=-36$, so the solutions will be complex numbers. Indeed:

$$
x=\frac{-(-4) \pm \sqrt{-36}}{2 \cdot 1}=\frac{4 \pm 6 i}{2}=2 \pm 3 i
$$

4 Exercises

Solve the following quadratic equations;

1. $x^{2}-12 x=-61$
2. $9 x^{2}-6 x+2=0$
3. $4 x^{2}+9=0$
4. $x^{2}=4 x+7=0$
