BRONX COMMUNITY COLLEGE of the City University of New York

DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE

MATH 42 Nikos Apostolakis Additional Review May 13, 2014

1. Find bases for the row space, the column space, and the null space f the following matrix A. Also find a basis for the orthogonal complement of the column space of A.

$$A = \begin{bmatrix} -2 & 4 & -2 & -4 \\ 2 & -6 & -3 & 1 \\ -3 & 8 & 2 & -3 \end{bmatrix}$$

2. Consider the matrix

$$A = \begin{bmatrix} 1 & 1 & -1 \\ 1 & 1 & 0 \\ 1 & 0 & 3 \end{bmatrix}$$

Is A diagonalizable? If yes diagonalize it.

3. Prove that the set H of vectors in \mathbb{R}^4 of the form

$$\begin{bmatrix} a-2b+5c\\2a+5b-8c\\-a-4b+7c\\3a+b+c \end{bmatrix}$$

is a vector space. What's the dimension of H?

- 4. Let $\mathbb{M}_{3\times 3}$ be the vector space of real 3×3 matrices. As usual, for a matrix $A \in \mathbb{M}_{3\times 3}$ we write a_{ij} for the entry on the *i* row and *j* column. Which of the following subsets of $\mathbb{M}_{3\times 3}$ are subspaces? Justify your answers.
 - (a) $\mathbb{G}_{3\times 3}$ the set of all invertible 3×3 matrices.
 - (b) The set of all singular 3×3 matrices.
 - (c) $\mathbb{D}_{3\times 3}$ the set of diagonal 3×3 matrices.
 - (d) The set of 3×3 matrices whose second and third columns are equal.
 - (e) The set of 3×3 matrices with the property that every entry of the second row is one more than the entry of the third row in the same column.
 - (f) The set $\mathbb{A}_{3\times 3}$ of anti-symmetric 3×3 matrices, i.e. matrices A with the property that for all i, j with $1 \le i, j \le 3$, $a_{ij} = -a_{ji}$.

(g) The set of all 3×3 matrices that have trace 0^1 .

For those subsets that are vector spaces find their dimension.

5. Recall the subspace $\mathbb{S}_{3\times 3}$ of symmetric 3×3 matrix from the take home exam. Define a function $T: \mathbb{M}_{3\times 3} \to \mathbb{S}_{3\times 3}$ by

$$T(A) = S$$
, where $s_{ij} = a_{ij} + a_{ji}$

- (a) Prove that T(A) is indeed a symmetric matrix.
- (b) Prove that T is a linear transformation.
- (c) Find the kernel of T.
- 6. Fix a matrix M in $\mathbb{M}_{n \times n}$. Prove that the set of all matrices A in $\mathbb{M}_{n \times n}$ that commute with M, i.e. that satisfy the equation AM = MA, is a subspace of $\mathbb{M}_{n \times n}$.
- 7. Verify that the following 4×4 matrix U is orthogonal and use this fact to find U^{-1} .

$$U = \begin{bmatrix} 0 & 3 & 1 & 5 \\ 1 & 5 & 0 & -3 \\ -4 & 1 & 1 & -1 \\ -1 & 1 & -4 & 1 \end{bmatrix}$$

8. Prove that $\mathcal{B} = {\mathbf{p}_1, \mathbf{p}_2, \mathbf{p}_3}$ is a basis for \mathbb{P}_2 , where:

$$\mathbf{p}_1 = 1$$
, $\mathbf{p}_2 = 1 - x$, $\mathbf{p}_3 = 1 - 2x + x^3$.

Find the coordinates of $\mathbf{p} = 1 + 2x + x^2$ with respect to the basis \mathcal{B} .

- 9. Let $T: \mathbb{P}_1 \to \mathbb{P}_2$ be defined by $T(\mathbf{p}(x)) = x\mathbf{p}(2x+1)$.
 - (a) Prove that T is a linear transformation.
 - (b) Find the matrix of T with respect to the standard bases of \mathbb{P}_1 and \mathbb{P}_2 .
- 10. Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ be defined by

$$T(x,y) = (x-y,2x+4y)$$

Find a basis \mathcal{B} of \mathbb{R}^2 for which the matrix of T is diagonal and find the matrix of T with respect to that basis.

11. M is a 3×3 matrix with the property that $\begin{bmatrix} 1\\2\\3 \end{bmatrix}$ is an eigenvector with eigenvalue 5, and $\begin{bmatrix} -1\\0\\-3 \end{bmatrix}$ and $\begin{bmatrix} 0\\0\\2 \end{bmatrix}$ are eigenvectors with eigenvalue 2. Find the determinant of M.

¹Recall that the *trace* of a matrix is the sum of its diagonal entries.