# BRONX COMMUNITY COLLEGE <br> of the City University of New York 

## DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE

MATH 42
Nikos Apostolakis

1. Find bases for the row space, the column space, and the null space f the following matrix $A$. Also find a basis for the orthogonal complement of the column space of $A$.

$$
A=\left[\begin{array}{cccc}
-2 & 4 & -2 & -4 \\
2 & -6 & -3 & 1 \\
-3 & 8 & 2 & -3
\end{array}\right]
$$

2. Consider the matrix

$$
A=\left[\begin{array}{ccc}
1 & 1 & -1 \\
1 & 1 & 0 \\
1 & 0 & 3
\end{array}\right]
$$

Is $A$ diagonalizable? If yes diagonalize it.
3. Prove that the set $H$ of vectors in $\mathbb{R}^{4}$ of the form

$$
\left[\begin{array}{c}
a-2 b+5 c \\
2 a+5 b-8 c \\
-a-4 b+7 c \\
3 a+b+c
\end{array}\right]
$$

is a vector space. What's the dimension of $H$ ?
4. Let $\mathbb{M}_{3 \times 3}$ be the vector space of real $3 \times 3$ matrices. As usual, for a matrix $A \in \mathbb{M}_{3 \times 3}$ we write $a_{i j}$ for the entry on the $i$ row and $j$ column. Which of the following subsets of $\mathrm{M}_{3 \times 3}$ are subspaces? Justify your answers.
(a) $\mathbb{G}_{3 \times 3}$ the set of all invertible $3 \times 3$ matrices.
(b) The set of all singular $3 \times 3$ matrices.
(c) $\mathbb{D}_{3 \times 3}$ the set of diagonal $3 \times 3$ matrices.
(d) The set of $3 \times 3$ matrices whose second and third columns are equal.
(e) The set of $3 \times 3$ matrices with the property that every entry of the second row is one more than the entry of the third row in the same column.
(f) The set $\mathbb{A}_{3 \times 3}$ of anti-symmetric $3 \times 3$ matrices, i.e. matrices $A$ with the property that for all $i, j$ with $1 \leq i, j \leq 3, a_{i j}=-a_{j i}$.
(g) The set of all $3 \times 3$ matrices that have trace $0^{1}$.

For those subsets that are vector spaces find their dimension.
5. Recall the subspace $\mathbb{S}_{3 \times 3}$ of symmetric $3 \times 3$ matrix from the take home exam. Define a function $T: \mathbb{M}_{3 \times 3} \rightarrow \mathbb{S}_{3 \times 3}$ by

$$
T(A)=S, \quad \text { where } s_{i j}=a_{i j}+a_{j i}
$$

(a) Prove that $T(A)$ is indeed a symmetric matrix.
(b) Prove that $T$ is a linear transformation.
(c) Find the kernel of $T$.
6. Fix a matrix $M$ in $\mathbb{M}_{n \times n}$. Prove that the set of all matrices $A$ in $\mathbb{M}_{n \times n}$ that commute with $M$, i.e. that satisfy the equation $A M=M A$, is a subspace of $\mathbb{M}_{n \times n}$.
7. Verify that the following $4 \times 4$ matrix $U$ is orthogonal and use this fact to find $U^{-1}$.

$$
U=\left[\begin{array}{cccc}
0 & 3 & 1 & 5 \\
1 & 5 & 0 & -3 \\
-4 & 1 & 1 & -1 \\
-1 & 1 & -4 & 1
\end{array}\right]
$$

8. Prove that $\mathcal{B}=\left\{\mathbf{p}_{1}, \mathbf{p}_{2}, \mathbf{p}_{3}\right\}$ is a basis for $\mathbb{P}_{2}$, where:

$$
\mathbf{p}_{1}=1, \quad \mathbf{p}_{2}=1-x, \quad \mathbf{p}_{3}=1-2 x+x^{3}
$$

Find the coordinates of $\mathbf{p}=1+2 x+x^{2}$ with respect to the basis $\mathcal{B}$.
9. Let $T: \mathbb{P}_{1} \rightarrow \mathbb{P}_{2}$ be defined by $T(\mathbf{p}(x))=x \mathbf{p}(2 x+1)$.
(a) Prove that $T$ is a linear transformation.
(b) Find the matrix of $T$ with respect to the standard bases of $\mathbb{P}_{1}$ and $\mathbb{P}_{2}$.
10. Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be defined by

$$
T(x, y)=(x-y, 2 x+4 y)
$$

Find a basis $\mathcal{B}$ of $\mathbb{R}^{2}$ for which the matrix of $T$ is diagonal and find the matrix of $T$ with respect to that basis.
11. $M$ is a $3 \times 3$ matrix with the property that $\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]$ is an eigenvector with eigenvalue 5 , and $\left[\begin{array}{c}-1 \\ 0 \\ -3\end{array}\right]$ and $\left[\begin{array}{l}0 \\ 0 \\ 2\end{array}\right]$ are eigenvectors with eigenvalue 2. Find the determinant of $M$.

[^0]
[^0]:    ${ }^{1}$ Recall that the trace of a matrix is the sum of its diagonal entries.

