BRONX COMMUNITY COLLEGE
 of the City University of New York

DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE

MATH 42
Nikos Apostolakis

Midterm
March 20, 2014

Name: \qquad

Instructions:

- Write your answers in the provided booklets.Show all your work

1. Solve the following system.

$$
\left\{\begin{aligned}
x_{1}-x_{2}+2 x_{3}-x_{4} & =-1 \\
2 x_{1}+x_{2}-2 x_{3}-2 x_{4} & =-2 \\
-x_{1}+2 x_{2}-4 x_{3}+x_{4} & =1 \\
3 x_{1}-3 x_{4} & =-3
\end{aligned}\right.
$$

2. Verify that the indexed set $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}$ is linearly dependent and express one of the vectors as a linear combination of the other vectors.

$$
\mathbf{v}_{1}=\left[\begin{array}{c}
-1 \\
3 \\
2
\end{array}\right], \quad \mathbf{v}_{2}=\left[\begin{array}{c}
3 \\
-2 \\
0
\end{array}\right], \quad \mathbf{v}_{3}=\left[\begin{array}{c}
-10 \\
2 \\
-4
\end{array}\right]
$$

3. A transformation $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ is defined by $T(x, y, z)=(2 x-y+3 z, 4 z, 2 y-5 z)$.
(a) Prove that T is linear.
(b) Find the standard matrix of T.
(c) Find the volume of $T(S)$ where S is the parallepiped determined by the vectors $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}$, where:

$$
\mathbf{v}_{1}=\left[\begin{array}{c}
-1 \\
2 \\
0
\end{array}\right], \quad \mathbf{v}_{2}=\left[\begin{array}{l}
0 \\
1 \\
3
\end{array}\right], \quad \mathbf{v}_{3}=\left[\begin{array}{c}
3 \\
0 \\
-1
\end{array}\right]
$$

4. Let

$$
A=\left[\begin{array}{ccc}
1 & -1 & 1 \\
2 & 1 & 0 \\
-2 & -1 & 1
\end{array}\right]
$$

(a) Find A^{-1}
(b) Use the result in part (a) to solve the system $A \mathbf{x}=\mathbf{b}$ where

$$
\mathbf{b}=\left[\begin{array}{l}
3 \\
2 \\
1
\end{array}\right]
$$

5. Prove one of the following:
(a) If A is a singular $n \times n$ matrix then there exists a non-zero $n \times n$ matrix B such that $A \cdot B=O$.
(b) If A is invertible then $\operatorname{det} A \neq 0$.
6. Mark each of the following statements as True or False. Justify your answer.
(a) Let A be an $m \times n$ matrix. If the homogeneous system $A \mathbf{x}=\mathbf{0}$ has non-trivial solutions then for some $\mathbf{b} \in \mathbb{R}^{m}$ the system $A \mathbf{x}=\mathbf{b}$ is inconsistent.
(b) Let A be an $m \times n$ matrix. If the columns of A span \mathbf{R}^{m} then the linear transformation determined by A is one-to-one.
(c) Let A be an $n \times n$ matrix. If the columns of A are linearly independent then the linear transformation determined by A is onto.
(d) If A and B are $n \times n$ matrices then $\operatorname{det}(A \cdot B)=\operatorname{det} A \cdot \operatorname{det} B$

7. Extra Credit Let

$$
A=\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right]
$$

Find all 2×2 matrices B that commute with A, i.e. they satisfy $A B=B A$.

