Exercise. Prove the "Parallelogram Rule for Addition" of vectors in \mathbb{R}^{2}. In other words:

Consider Figure 1 where O is the origin of the coordinate system, A has coordinates $\left(a_{1}, a_{2}\right), B$ has coordinates $\left(b_{1}, b_{2}\right)$ and $O A C B$ is a parallelogram. Prove that C has coordinates $\left(a_{1}+b_{1}, a_{2}+b_{2}\right)$.

Figure 1. The parallelogram rule
Solution. We first note that points A and B have to be different than O, so at least one coordinate of each is different than 0 . We also note that the points O, A, and B are not colinear-otherwise there is no parallelogram.

The line $O A$ has equation $a_{2} x-a_{1} y=0$ and the line $O B$ has equation $b_{2} x-b_{1} y=0$. Since B is not in the line $O A$ we must have:

$$
a_{2} b_{1}-a_{1} b_{2} \neq 0
$$

The line $A C$ is parallel to $0 B$ and contains point B so it has equation $b_{2} x-b_{1} y=b_{2} a_{1}-b_{1} a_{2}$. Similarly, the line $B C$ has equation $a_{2} x-a_{1} y=$ $a_{2} b_{1}-a_{1} b_{2}$. So to find the coordinates of the point C we need to solve the system:

$$
\left\{\begin{aligned}
b_{2} x-b_{1} y & =b_{2} a_{1}-b_{1} a_{2} \\
a_{2} x-a_{1} y & =a_{2} b_{1}-a_{1} b_{2} \\
& 1
\end{aligned}\right.
$$

The augmented matrix of this system is:

$$
\left[\begin{array}{lll}
b_{2} & -b_{1} & b_{2} a_{1}-b_{1} a_{2} \\
a_{2} & -a_{1} & a_{2} b_{1}-a_{1} b_{2}
\end{array}\right]
$$

If $b_{2} \neq 0$ then adding to the second row $-\frac{a_{2}}{b_{2}}$ times the first we get:

$$
\left[\begin{array}{ccc}
b_{2} & -b_{1} & b_{2} a_{1}-b_{1} a_{2} \\
0 & \frac{-a_{1} b_{2}+b_{1} a_{2}}{b_{2}} & \frac{b_{2}\left(a_{2} b_{1}-a_{1} b_{2}\right)-a_{2}\left(b_{2} a_{1}-b_{1} a_{2}\right)}{b_{2}}
\end{array}\right]
$$

Since $a_{1} b_{2}-b_{1} a_{2} \neq 0$, we can multiply the second row with $\frac{b_{2}}{a_{1} b_{2}-b_{1} a_{2}}$ to get:

$$
\left[\begin{array}{ccc}
b_{2} & b_{1} & b_{2} a_{1}-b_{1} a_{2} \\
0 & -1 & -b_{2}-a_{2}
\end{array}\right]
$$

and adding to the first row b_{1} times the second we obtain:

$$
\left[\begin{array}{ccc}
b_{2} & 0 & b_{2} a_{1}+b_{1} b_{2} \\
0 & -1 & -b_{2}-a_{2}
\end{array}\right]
$$

Finally by dividing the first row by b_{2} and the second by -1 we get the reduced echelon form:

$$
\left[\begin{array}{lll}
1 & 0 & a_{1}+b_{1} \\
0 & 1 & b_{2}+a_{2}
\end{array}\right]
$$

So the solution is $x=a_{1}+b_{1}, y=a_{2}+b_{2}$. If $b_{2}=0$ we have the matrix:

$$
\left[\begin{array}{ccc}
0 & -b_{1} & -b_{1} a_{2} \\
a_{2} & -a_{1} & a_{2} b_{1}
\end{array}\right]
$$

which becomes:

$$
\left[\begin{array}{ccc}
a_{2} & -a_{1} & a_{2} b_{1} \\
0 & -b_{1} & -b_{1} a_{2}
\end{array}\right]
$$

Now $b_{1} \neq 0$ (since B is not the origin) so by dividing the second row by $-b_{1}$ we get

$$
\left[\begin{array}{ccc}
a_{2} & -a_{1} & a_{2} b_{1} \\
0 & 1 & a_{2}
\end{array}\right]
$$

which gives the echelon form:

$$
\left[\begin{array}{ccc}
a_{2} & 0 & a_{2} b_{1}+a_{2} a_{1} \\
0 & 1 & a_{2}
\end{array}\right]
$$

Since A is not in the line $O B$ we have $a_{2} \neq 0$ so dividing the first row by a_{2} gives:

$$
\left[\begin{array}{ccc}
1 & 0 & b_{1}+a_{1} \\
0 & 1 & a_{2}
\end{array}\right]
$$

i.e. we have $x=a_{1}+b_{1}, y=a_{2}$, again confirming the formula, since in this case $a_{2}+b_{2}=a_{2}$.

