BRONX COMMUNITY COLLEGE of the City University of New York

 DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE

 DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE}

MATH 31
Nikos Apostolakis

Exam 1
October 15, 2018

Name: \qquad

Directions: Write your answers in the provided booklets. Make sure to indicate which answer belongs to which question. To get full credit you must show all your work. Simplify your answers whenever possible. Be certain to indicate your final answer clearly. This exam has a total of 1150 points. The perfect score for this exam is 1000 points.

1. The graph of $y=f(x)$ is shown bellow:

(a) (50 points) At which points is f discontinuous? What is the nature of discontinuity at each of these points?
(b) (50 points) At which points does f fail to be differentiable? Give reasons.
2. Find the following limits. Your answer should be a real number, $+\infty,-\infty$, or Does Not Exist.
(a) (25 points) $\lim _{x \rightarrow-5} \frac{x^{2}-2 x-35}{x+5}$
(b) (25 points) $\lim _{x \rightarrow 0} \frac{\sin 5 x}{3 x}$
(c) (25 points) $\lim _{x \rightarrow-7} \frac{|x+7|}{x+7}$
(d) (25 points) $\lim _{x \rightarrow \frac{\pi}{2}^{+}} \tan x$
3. (100 points) Prove that the equation $5 x^{3}-7 x^{2}+8 x-1=0$ has a solution in the interval $(0,1)$. Name any theorems you're using.
4. Let $f(x)=\left|x^{2}-2 x-3\right|$.
(a) (50 points) Sketch a graph of $y=f(x)$.
(b) (50 points) At what points f fails to be differentible?
(c) (50 points) Find $f^{\prime}(x)$ where it exists.
5. (100 points) Calculate $\frac{d}{d x}\left(x^{2}-5 x\right)$ using the definition of the derivative as a limit of the difference quotient.
6. Calculate the following derivatives. Simplify your answer as much as possible:
(a) $\left(25\right.$ points) $\left(\frac{x}{x-1}\right)^{\prime}$
(b) $\left(35\right.$ points) $(\sqrt{x} \cos \sqrt{x})^{\prime}$
(c) $\left(40\right.$ points) $(\sqrt[5]{x \tan x})^{\prime}$
7. Consider the curve:

$$
y^{3}+x^{3}=2 x y^{2}+x-1
$$

(a) (100 points) Find an equation for y^{\prime}, at the points that this equation can be solved to express y as a function of x.
(b) (50 points) Find the equation of the line tangent to the curve at the point $(-2,-1)$.
8. (150 points) A ladder 10 ft long rests against a vertical wall as in the figure bellow.

The bottom of the ladder slides away from the wall at a rate of $2 \mathrm{ft} / \mathrm{s}$. How fast is the top of the ladder sliding down when the bottom of the ladder is 8 ft away from the wall?
9. A particle moves on a horizontal line according to the law of motion

$$
s(t)=t^{3}-6 t^{2}+9 t+5, \quad t \geq 0
$$

where t is measured in seconds and s in meters.
(a) (50 points) Find the velocity and acceleration of the particle as functions of time.
(b) (25 points) When is the particle moving forward and when is it moving backwards?
(c) (25 points) When is the particle speeding up and when is it slowing down?
(d) (25 points) Find the total distance traveled by the particle in the first four seconds.
10. Let $f(x)=\sqrt[3]{x-2}$.
(a) (50 points) Find the linearization of f at $a=10$
(b) (25 points) Use this linearization to estimate $\sqrt[3]{7.98}$.

