Take Home Make up for First Exam for MTH 23

October 12, 2017
Nikos Apostolakis
Due Date: Tuesday October 17, 2017

1. A random sample of 30 heights (in hundredths of inches, $100=1 \mathrm{inch}$) from a population is given below:

6578	7151	6939	6821	6778
6869	6980	7001	6790	6678
6648	6762	6830	6711	6827
7109	6646	6864	7123	6713
6783	6887	6348	6842	6762
6720	7084	6749	6653	6544

(a) Construct a frequency table for the above data, listing the class limits, the class boundaries, the class midpoint, the frequency and the relative frequency. Use five classes.
(b) Draw a histogram for the frequency table in Part (a).

You can use the following grid:

2. For the following data

$$
\begin{array}{llllllllll}
47 & 59 & 50 & 56 & 56 & 51 & 53 & 57 & 52 & 49
\end{array}
$$

calculate:
(a) The sample mean.
(b) The sample standard deviation.
(c) The range.
(d) The median.
(e) The mode
(f) The first and third quartiles.
3. Let x be the age of a bighorn sheep (in years) and y the mortality rate (percent that dies) for that age group. So for example, if $x=1$, then $y=14.0$ and that means that 14% of bighorn sheep between 1 and 2 years old died. A random sample of Arizona bighorn sheep gave the following information:

$$
\begin{array}{c|ccccc}
\mathrm{x} & 1 & 2 & 3 & 4 & 5 \\
\hline \mathrm{y} & 14.0 & 18.9 & 14.4 & 19.6 & 20.0
\end{array}
$$

(a) Draw a scatter diagram.
(b) Find the equation of the least square regression line and plot it in the same graph you used in part (a).
(c) Find the correlation coefficient r.

You can use the following grid

4. Two cards are drawn from a standard 52 -card deck, one after the other, with replacement, that is, after the first card is drawn we put it back, reshuffle, and then draw the other. Let A be the event "The first card is black", and B be the event "The second card is red".
(a) Are the event A and B independent?
A. Yes
B. No
(b) Find the probability $P(A$ and $B)$.
(c) Find the probability $P(A$ or $B)$.
5. Two cards are drawn from a standard 52 -card deck, one after the other, without replacement, that is, after the first card is drawn we put it aside and then draw the other. Let A be the event "The first card is black", and B be the event "The second card is red".
(a) Are the event A and B independent?
A. Yes
B. No
(b) Find the probability $P(A$ and $B)$.
(c) Find the probability $P(A$ or $B)$.
6. The breakdown of the student body in a class according to race/ethnicity and gender is shown in the table below:

	White	Black	Hispanic	Asian	Other	Total
Male	25	12	6	3	1	47
Female	26	15	5	3	4	53
Total	51	27	11	6	5	100

A student is randomly selected from this class. (To select "randomly" means that every student has the same chance of being selected.) Find the probabilities of the following events:
(a) The selected student is Female.
(b) The selected student is Hispanic or Black.
(c) The selected student is an Asian Male.
(d) The selected student is Asian or Male.
(e) The selected student is not Other.
(f) The selected student is Black given that she is Female.
(g) The selected student is Female given that they are Black.
(h) The selected student is White or Male.

