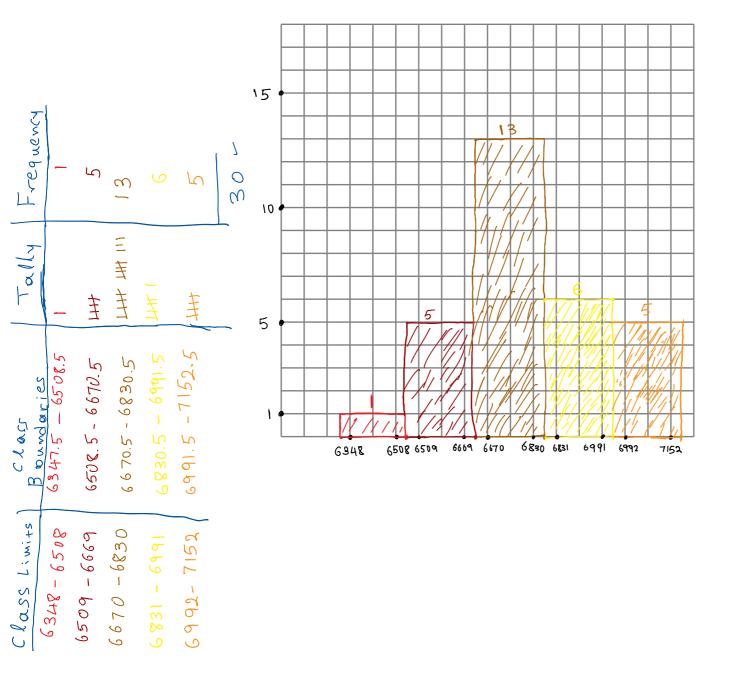
Take Home Make up for First Exam for MTH 23

October 12, 2017 Nikos Apostolakis

Due Date: Tuesday October 17, 2017

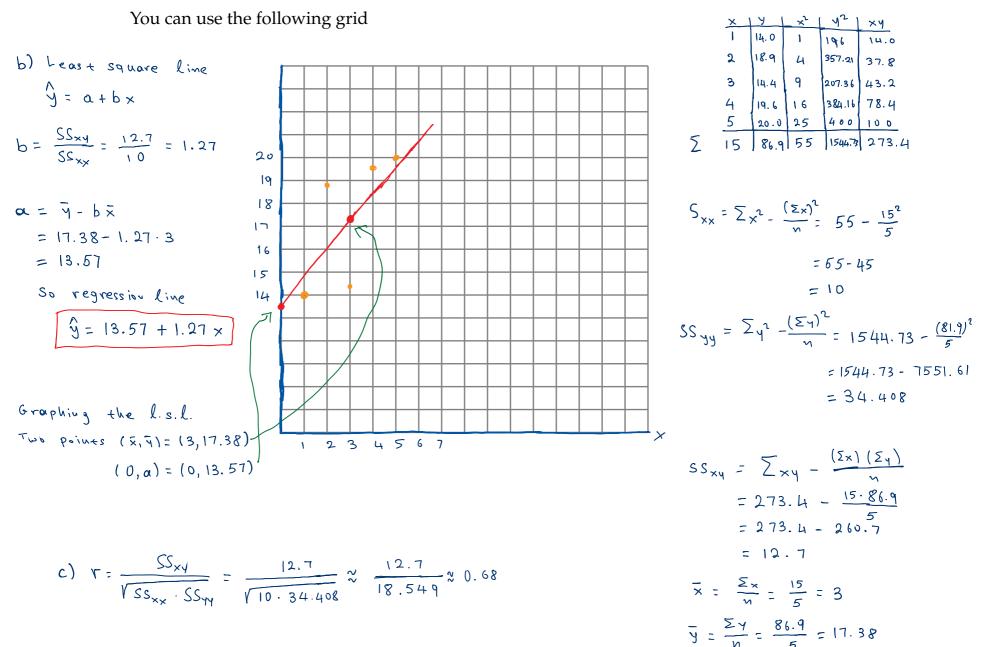

1. A random sample of 30 heights (in hundredths of inches, 100 = 1 inch) from a population is given below:

Min value = 6348	6578 7151 6939 6821 678	800
Max value = 7151	6869 6980 7001 6790 6678	$\frac{803}{5} = 160.6$
Range = 7151 - 6348	6648 6762 6830 6711 $68277109 6646 6864 7123 6713$	So class width = 161
= 803	6783 6887 6348 6842 6762 6720 7084 6749 6663 6544	

(a) Construct a frequency table for the above data, listing the class limits, the class boundaries, the class midpoint, the frequency and the relative frequency. Use five classes.

(b) Draw a histogram for the frequency table in Part (a).

You can use the following grid:



- 2. For the following data
- $47 \quad 59 \quad 50 \quad 56 \quad 56 \quad 51 \quad 53 \quad 57 \quad 52 \quad 49$

calculate:

- (a) The sample mean.
- (b) The sample standard deviation.
- (c) The range.
- (d) The median.
- (e) The mode
- (f) The first and third quartiles.
- 3. Let *x* be the age of a bighorn sheep (in years) and *y* the mortality rate (percent that dies) for that age group. So for example, if x = 1, then y = 14.0 and that means that 14% of bighorn sheep between 1 and 2 years old died. A random sample of Arizona bighorn sheep gave the following information:

- (a) Draw a scatter diagram. See the grid.
- (b) Find the equation of the least square regression line and plot it in the same graph you used in part (a).
- (c) Find the correlation coefficient r.

Question 2 To answer the last 5 points we sort the data:

- c) The range is 59 47 = 12
- d) There are 10 values so the median is the mean of the fifth and sixth value so median = $\frac{52+53}{2} = \frac{52.5}{2}$
- C) The most frequent value is 56. So the mode is 56
- f) The first quartile is the median of the first half of the data, that is the third value: Q, = 50
 - The third quartile is the median of the second half of the data, that is the eigth value. Q3 = 56

For the first two parts we use the table:

Σ¯

×	ײ	a) $\bar{x} = \frac{\bar{z}_{x}}{n} = \frac{530}{10} = 53$
47	2209	m 10
49	24 01	
5 O	2500	b) $s^2 = \frac{\sum x^2 - \frac{(\sum x)^2}{y}}{28226 - \frac{280900}{10}}$
51	2601	m-1 9
52	2704	- 28226-28090
53	2809	= <u>28226-28990</u> 9
56	3136	$= \frac{136}{9}$
56	3136	
57	3249	≈ 15.11
59	3481	So S % 15.11 % 3.89
530	28226	

4. Two cards are drawn from a standard 52-card deck, one after the other, with replacement, that is, after the first card is drawn we put it back, reshuffle, and then draw the other. Let A be the event "The first card is black", and *B* be the event "The second card is red"

	The mote card is black, and b be the event the seed	
The outcome of the first event	(a) Are the event A and B independent?	$P(A) = \frac{26}{52} = 0.5$
does not influence the second sin	A. Yes B. No	$P(B) = \frac{26}{52} = 0.5$
	(b) Find the probability $P(A \text{ and } B)$. $P(A \text{ and } B)$	
I'me back in	(c) Find the probability $P(A \text{ or } B)$. P(A or B) = $P(A)$	
5.	Two cards are drawn from a standard 52-card deck, or	ne after the other, <i>without replacement</i> , that is,
	after the first card is drawn we put it aside and then d	lraw the other. Let <i>A</i> be the event "The first
	card is black", and <i>B</i> be the event "The second card is	red".

The one come of (a) Are the event A and B independent? the first event

A. Yes B. No

- in fluences the second. Depending (b) Find the probability P(A and B). (ANSWERS ON NEXT PAGE
- in whether the

first card was (c) Find the probability P(A or B).

- black or red there are more red or black cards
 - 6. The breakdown of the student body in a class according to race/ethnicity and gender is shown in the table below:

	White	Black	Hispanic	Asian	Other	Total
Male	25	12	6	3	1	47
Female	26	15	5	3	4	53
Total	51	27	11	6	5	100

A student is randomly selected from this class. (To select "randomly" means that every student has the same chance of being selected.) Find the probabilities of the following events:

- (a) The selected student is Female. $P(Female) = \frac{53}{100} = 0.53$ U because we have wurnally exclusive events
- (b) The selected student is Hispanic or Black. $P(H_{ispanic} OR Black) = P(H_{isp}) + P(Black) = \frac{27}{100} + \frac{11}{100} = \frac{38}{100} = 0.38$
- P(Asian Male) = 30= 0.03 Not mutually exclusive events (c) The selected student is an Asian Male.
- (d) The selected student is Asian or Male. P(Asian OR Male) = P(Asian) + P(Male) P(Asian Male)
- (e) The selected student is **not** Other.
- (f) The selected student is Black **given** that she is Female.
- (g) The selected student is Female **given** that they are Black.
- (h) The selected student is White or Male.

e)
$$P(O + her) = \frac{5}{100} = 0.05$$
 So $P(NOT O + her) = 1 - 0.05 = 0.95$

- f) There are 53 Female students, 15 of them Black. So: P(Black | Female) = 15 = ~ 0.283
- g) There are 27 Black students. 15 of them Black. So: $P(Fewale \mid Black) = \frac{15}{27} \approx 0.56$

h) P(White OR Make) = P(WHite) + P(Make) - P(WHite Make) = 0.51 + 0.47 - 0.25 = 0.73

 $= \frac{6}{100} + \frac{47}{100} - \frac{3}{100} = \frac{50}{100} = 0.50$

Ruestion 5 In a standard deck there are 26 red and 26 black cards. So $p(A) = \frac{26}{52} = 0.5$

b) Since A, B are not independent we use the formula:

Now $P(B \text{ given } A) = \frac{26}{51} \approx .51$ because if A happened there are 51 cards in the deck, and 26 of them are black.

c) P(A or B) = P(A) + P(B) - P(A and B)

To find P(B) we use the formula P(B) = P(A). P(B given A) + P(motA). P(B given not A) $P(B \text{ given mot } A) = \frac{25}{51} \approx .49$ = .5

So P(A or B) = .5 +.5 - .225 = .775