Review Questions

Nikos Apostolakis

1. Evaluate the given expression for the given values of the variables:
(a) $x^{2}-3 x y+4 x y^{2} ; x=-2, y=3$
(b) $x^{2}-3 x y+4 x y^{2} ; x=-2, y=2 i$
(c) $x^{2}-3 x y+4 x y^{2} ; x=\sqrt{2}, y=\sqrt{10}$
(d) $\sqrt{b^{2}-4 a c} ; a=1, b=5, c=6$
(e) $\sqrt{b^{2}-4 a c} ; ~ a=3, b=-6, c=-4$
(f) $\sqrt{b^{2}-4 a c} ; a=12, b=-8, c=-15$
(g) $\sqrt{b^{2}-4 a c} ; a=2, b=2, c=-3$
(h) $\sqrt{b^{2}-4 a c} ; a=1, b=-6, c=34$
(i) $\frac{-b+\sqrt{b^{2}-4 a c}}{2 a} ; a=2, b=5, c=-3$
2. Simplify as much as possible:
(a) $\sqrt{80}$
(b) $\sqrt{-90}$
(c) $3 \sqrt{45}-2 \sqrt{54}-5 \sqrt{20}$
(d) $6 \sqrt{600}+7 \sqrt{24}-3 \sqrt{48}$
(e) $(1-2 \sqrt{5})(1+2 \sqrt{5}))$
(f) $\sqrt{7}(\sqrt{14}-\sqrt{21})$
(g) $(\sqrt{2}+\sqrt{(3)})(\sqrt{6}-\sqrt{10})$
(h) $(2+\sqrt{3})^{2}$
(i) $(2+\sqrt{3})^{3}$
(j) $(2+\sqrt{3})^{4}$
(k) $(3-i)(4+5 i)$
(l) $(5-6 i)(5+6 i)$
(m) $(3-4 i)^{2}$
3. Simplify, as much as possible. The final answer should not contain any radicals in the denominators.
(a) $\frac{3}{\sqrt{6}}$
(b) $\frac{2 \sqrt{5}}{\sqrt{3}}$
(c) $\frac{\sqrt{5} \sqrt{35}}{\sqrt{7}}$
(d) $\frac{\sqrt{8} \sqrt{6}}{\sqrt{15}}$
4. Verify that the given value is a solution to the given equation:
(a) $x^{2}-5 x+6=0 ; x=2$
(b) $12 x^{2}-8 x=15 ; x=\frac{1}{2}$
(c) $x^{2}-6 x+13=0 ; x=3+\sqrt{2}$
(d) $x^{2}+8 x=-41 ; x=-4+5 i$
(e) $x^{4}-14 x^{2}=-1 ; x=2+\sqrt{3}$
(f) $x^{4}-16 x^{2}+4=0 ; x=\sqrt{3}+\sqrt{5}$
5. Consider the quadratic polynomial:

$$
x^{2}+8 x+10
$$

(a) Show that this polynomial cannot be factored using whole numbers.
(b) However this polynomial can be factored using irrational numbers. Show by doing the calculations that:

$$
(4+\sqrt{6})+(4-\sqrt{6})=8
$$

and

$$
(4+\sqrt{6})(4-\sqrt{6})=10
$$

So conclude that

$$
x^{2}+8 x+10=(x+4+\sqrt{6})(x+4-\sqrt{6})
$$

(c) Verify this factoring by multiplying the two factors in the right hand side.

