Ninth Set of Homework for Math 05

Nikos Apostolakis

Please note: You should fully justify your answers.

1 Finding equations of lines

1. Find an equation of the line that:
(a) has slope -2 and y-intercept $11 . \quad y=-2 x+11$
(b) has slope $-\frac{5}{2}$ and y-intercept $0 . \quad y=-\frac{5}{2} x$
(c) has slope $\frac{3}{4}$ and passes through the point $(0,-4) \quad y=\frac{3}{4} x-4$
(d) has the same slope as $2 y-4 x=10$ and the same y-intercept as $y=5 x-3 . \quad y=2 x-3$
(e) has slope -5 and passes through the point $(-2,3) . \quad y=-5 x+7$
(f) has slope 0 and passes through the point $(3,5) . \quad y=5$
(g) is vertical and passes through the point $(-3,0) . \quad x=-3$
(h) passes through the points $(-5,13)$ and $(1,-5) . \quad y=-3 x-2$
(i) passes through the points $(-2,4)$ and $(1,7) . \quad y=x+6$
(j) passes through the points $(3,0)$ and $(6,2) . \quad y=\frac{2}{3} x-2$
(k) passes through the points $(-1,5)$ and $(-1,-3) . \quad x=-1$
(l) passes through $(0,0)$ and $(3,-5) . \quad y=-\frac{5}{3} x$
(m) passes through the points $(2,4)$ and $(-3,4) . \quad y=4$
(n) passes through the points $(0,4)$ and $(-5,0) . \quad y=\frac{4}{5} x+4$
(o) passes through the points $\left(\frac{2}{3},-\frac{1}{9}\right)$, and $\left(-\frac{15}{2},-\frac{6}{5}\right) . \quad y=\frac{2}{15} x-\frac{1}{5}$
(p) has the same slope as $3 x-5 y=-2$ and the same x-intercept as $-2 x-3 y=6 . \quad y=\frac{3}{5} x-3$
(q) has the same x-intercept as $-2 x+3 y=-2$ and the same y-intercept as $x-y=3 . \quad y=-3 x-3$
2. Find the equations for each of the lines in Figure 1.

2 Parallel lines, Perpendicular lines

1. For each of the following pairs of lines, decide whether they are parallel, perpendicular or neither.
(a) $y=3 x-4, y=-3 x+2 \quad$ Neither
(b) $y=\frac{2}{3} x, y=-\frac{3}{2} x+9 \quad$ Perpendicular
(c) $2 x-3 y=7,2 x-3 y=5 \quad$ Parallel
(d) $3 x+y=-2,-2 x+3 y=0 \quad$ Neither
(e) $-5 x+2 y=8,2 x+5 y=-3 \quad$ Perpendicular
(f) $y=3 x+8,3 x+y=-3 \quad$ Neither

(a) $y=-2 x+3$

(c) $y=x$

(e) $y=3 x-4$

(b) $y=x-2$

(d) $y=-x$

(f) $y=\frac{2}{3} x-2$

Figure 1: The lines of Question 2
(g) $y=2 x-7, y=2 x+9 \quad$ Parallel
(h) $y=5 x-7, y=-\frac{x}{5}+9 \quad$ Perpendicular
(i) $2 x+3 y-9=0, y=-\frac{2 x}{3}-2 \quad$ Parallel
2. Find an equation for the line that:
(a) passes through $(-1,3)$ and is parallel to the line $y=3 x-5 . \quad y=3 x+6$
(b) is parallel to to $2 x-5 y=6$ and passes through $(1,-2) . \quad 2 x-5 y=12$
(c) is parallel to $x=-3$ and passes through $(5,9) . \quad x=5$
(d) is perpendicular to $x=2$ and passes through $(3,4) . \quad y=4$
(e) is perpendicular to $y=-\frac{x+2}{3}$ and passes through $(0,-2)$.
(f) passes through the point $(3,2)$ and is perpendicular to $2 x-3 y=5 . \quad 3 x+2 y=13$
(g) has the same y-intercept as $3 x-4 y=8$ and is parallel to $y=-5 x+11 . \quad y=-5 x-2$
3. Verify that the following four points are the corners of a parallelogram.

$$
P(-4,-9), Q(-2,-3), R(-4,-7), S(-6,-13)
$$

Answer. $R Q$ and $P S$ each have slope 2, so they are parallel. Also $P Q$ and $R S$ are parallel because each have slope 3. So, $P Q R S$ is a parallelogram.
4. Verify that the following three points are the corners of a right triangle.

$$
A(2,4), B(0,0), C(4,3)
$$

Answer. The slope of $A B$ is $m_{1}=2$ and the slope of $A C$ is $m_{2}=-\frac{1}{2}$. Since $m_{1} m_{2}=-1$ it follows that $A B$ and $A C$ are perpendicular, so the angle A of $A B C$ is a right angle. Therefore $A B C$ is a right triangle.
5. Verify that the following four points are the corners of a rectangle.

$$
A(1,1), B(4,4), C(-1,3), D(2,6)
$$

Answer. By computing the slopes we see that $A C$ and $B D$ are parallel and so are $A B$ and $C D$. Additionally, $A C$ is perpendicular to $A B$. So $A B C D$ is a parallelogram with a right angle. So it has to be a rectangle.
6. Consider again a line l with equation in standard form

$$
A x+B y+C=0
$$

where A, B, C are real numbers and at least one of A, B is non-zero.
(a) Prove that a line with equation

$$
A x+B y+D=0
$$

where D is any number, is parallel to l.
(b) Prove that a line with equation

$$
B x-A y+D=0
$$

where D is any number, is perpendicular to l.

