Third Set of Homework for Math 05

Nikos Apostolakis

Please note: You should fully justify your answers.

1 Evaluation of algebraic expressions

1. Evaluate each of the following expressions
A. $(a+b)^{2}$
B. $a^{2}+b^{2}$
C. $a^{2}+2 a b+b^{2}$
for the following values of the variables:
(a) $a=1, b=4 \quad 25 ; \quad 17 ; 25$
(b) $a=0, b=-2 \quad 4 ; 4 ; 4$
(c) $a=5, b=-3 \quad 4 ; \quad 34 ; \quad 4$
(d) $a=2, b=-2 \quad 0 ; 8 ; 0$
(e) $a=-3, b=-2 \quad 25 ; 13 ; 25$
(f) $a=\frac{1}{2}, b=-2 \quad \frac{9}{4} ; \quad \frac{17}{4} ; \quad \frac{9}{4}$
(g) $a=-\frac{1}{3}, b=-\frac{1}{2} \quad \frac{25}{36} ; \quad \frac{13}{36} ; \quad \frac{25}{36}$
2. Evaluate each of the following expressions for $a=2, b=-4, c=3$, and $d=-5$:
(a) $2 a-3 b-c+10 d \quad-37$
(b) $a^{2}+b^{2} \quad 20$
(c) $-a^{2}+3 b \quad-16$
(d) $2 b\left(a^{2}-2 d\right) \quad-112$
(e) $a^{2}-b^{2} \quad-12$
(f) $a^{3}+b^{3} \quad-56$
(g) $4-3 c+2 c^{2} \quad 13$
(h) $-2 a^{2}+6 a-4 \quad 0$
(i) $d c^{2}-4 a b \quad-13$
(j) $\frac{2 a-b}{-d+c} \quad 1$
(k) $\frac{a^{2}-3 b}{-d^{2}+3 c} \quad-1$
(l) $(a+b)(a-b) \quad-12$
(m) $(c+d)\left(c^{2}-c d+d^{2}\right) \quad-98$
3. Do the given values of the variables make the following statements true or false?
(a) $2 x+3 y=-2 ; \quad x=5, y=-4 \quad$ True
(b) $-y^{2}+y=-2 y ; \quad y=3 \quad$ True
(c) $|2 x-y|=-2 ; \quad x=-3, y=-4 \quad$ False
(d) $x^{2}+y^{2}<16 ; \quad x=3, y=-3 \quad$ False
(e) $\frac{2 x}{y^{2}}=-3 x y ; \quad x=0, y=4 \quad$ True
4. In the formula

$$
P=\frac{I}{r t}
$$

P stands for the principal, I for the total interest earned, r for the rate of interest, and t for the time, in years, that the money was invested. Find the principal if the total interest earned in 3 years at a rate of 4% is $\$ 720 . \quad P=\$ 6,000$
5. The area A of a triangle with base b and height h is given by the formula

$$
A=\frac{1}{2} b h
$$

Find the area of a triangle with base 5 in and height $4 \mathrm{in} . \quad A=10 \mathrm{in}^{2}$
6. The volume of a sphere of radius r is given by the formula

$$
V=\frac{4}{3} \pi r^{3}
$$

where π is the area of a circle of radius 1 (this is a number approximately equal to 3.14159265358979). Find the volume of a sphere of radius $3 \mathrm{~cm} . \quad V=36 \pi \mathrm{~cm}^{3}$

