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1. Introduction

When I speak with my students in the classroom, we easily hear
each other. The vocal folds, (thin membranes, also called vocal cords
or voice reeds) vibrate and push the air in our throats, creating waves
of acoustical pressure, which reach ears of the people nearby and force
their tympanic membranes to oscillate, thus creating certain signals
going through the nerves, which our brains can recognize and interpret.

But if I am in New York City and want to talk to my friend in
San Francisco, I physically unable to create acoustical waves powerful
enough to reach California; and if I could, it would be a disaster in New
York City. However, telephone and radio invented more than a century
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ago, can carry sounds over big distances. These devices first change
acoustical waves to electromagnetic waves, which cannot be heard but
can go very far away, even around Earth and farther on, and then the
electromagnetic waves are transformed back into acoustic waves, which
human beings can hear.

Any such transformation inevitably introduces certain distortions,
noise, which together with electro-magnetic fields in atmosphere de-
stroy, partially or completely the information (voice, music, etc.) car-
ried by waves. That is why we hear hissing and crackling in the old-
fashioned telephone, or noise when we listen to the old gramophone
records. Digital technology, together with certain other inventions,
drastically decreases the level of noise in the transmitted signals. The
technology is based on beautiful mathematical notions and results. The
goal of this text, aimed at the high-school and undergraduate students
and teachers, is to explain some mathematics, from the high-school
trigonometry to college linear algebra and complex analysis, hidden
behind and inside the digital technology.

The exposition is inevitably sketchy. The reader wishing to study
these issues in more detail, can read, for example, a comprehensive
treatise, of more than 1300 pages, by Salomon and Motta [7], and the
references therein.

2. Linearity in Non-Linear World

Our world is non-linear; indeed, nobody expects that after consum-
ing twice the amount of food, we will be able to lift double weight
or to run twice faster. However, the tremendous successes of classical
mathematics in sciences and technology during the previous four cen-
turies are based on a simple linear mathematical concept, introduced
by Isaac Newton and Gottfried Leibniz, called the differential of a func-
tion, which is the linear part of the increment of a function. Thus, we
are led to describe the linearity in mathematical terms.

We begin by reviewing a few basic concepts of Linear Algebra; the
latter is a part of mathematics studying linear structures, linear trans-
formations, and their properties. For the reader’s convenience and to
make the text more self-contained, we remind some important defini-
tions and include a few brief mathematical intermezzos. The reader
can find more details in any Linear Algebra textbook. If the reader is
familiar or is bored with this material, she can skip it.

2.1. Crash Introduction to Linear Spaces. The classical wisdom
claims that one cannot ”add apples and pears”. Indeed, we cannot
say that 2 apples and 3 pears together make 5 apples, or 5 pears.
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However, we can combine them in a more general category and say
that 3 pears and 2 apples make 5 fruits. A mathematical framework
for this procedure is a Linear Space.

Consider a set V of certain entities, called hereafter vectors, and
another set S, whose elements are called scalars. We assume that
S is a field, that is, we can perform with the scalars the four basic
arithmetic operations, addition, subtraction, multiplication, and divi-
sion, and these operations verify certain standard properties, in par-
ticular, the addition and multiplication are commutative, associative,
connected by the distributive rule, etc. The common examples are the
fields of real and complex numbers.

Problem 1. Find in your textbook or online the exact definition of the
field.

Less familiar example is the two-element field Z2 = {0, 1}; which is
also the simplest Boolean Algebra. The addition and multiplication in
Z2 are given by the disjunction aV b = max(a, b) and the conjunction
aΛb = min(a, b).

Problem 2. Verify the field axioms for Z2. What are the inverse
operations , that is, the subtraction and division in Z2?

In our examples S is always the field of real numbers R.

Definition 1. The set V is called a linear space (or a vector space,
which is the same) over the field of scalars S, if the following axioms
are valid.

Vectors can be added, that is, for any two vectors v1 ∈ V and v2 ∈ V,
there exists the unique vector v ∈ V, called their sum and denoted as
v = v1 + v2. The sum does not have to be the arithmetic sum of two
numbers; we just use the old term (sum) in a new meaning, because
the properties are similar. Thus, the nature of these objects (apples,
pears, numbers, or anything else) is immaterial. We assume that the
sum possesses the following properties.

1) It is commutative, that is, for any v1,v2 ∈ V, v1+v2 = v2+v1.
2) It is associative, that is, for any v1,v2, and v3 ∈ V,

(v1 + v2) + v3 = v1 + (v2 + v3).

3) There exists the unique neutral element, 0 ∈ V, called the zero
or the origin of the space V, such that 0 + v = v + 0 = v for every
vector v ∈ V.
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4) Each vector v ∈ V has the unique opposite vector −v ∈ V, such
that

v + (−v) = 0.

5) We suppose also that vectors can be multiplied by scalars, that
is, to any vector v ∈ V and to each scalar s ∈ S, there corresponds
the unique vector sv ∈ V, called their product. For any two scalars
s, t ∈ S and any vector v the product satisfies s(tv) = (st)v, and
1v = v, where 1 is the unit element of the field S.

6) The multiplication of a vector by a scalar is distributive with
respect to vectors and with respect to scalars, that is,

s(v1 + v2) = sv1 + sv2

and
(s1 + s2)v = s1v + s2v.

Definition 2. 1) The vector

v = s1v1 + s2v2 + · · ·+ skvk

is called the linear combination of vectors v1, . . . ,vk with the (scalar)
coefficients s1, . . . , sk ∈ S.

2) Vectors v1,v2, . . . ,vk are called linearly independent, if any their
linear combination is not zero unless all the coefficients are zero. Oth-
erwise, that is, if there exist k scalars, not all zero, such that the corre-
sponding linear combination of these vectors vanishes, the vectors are
called linearly dependent.

3) The system of vectors A = {v1,v2, . . . ,vk} in a linear space V
is called minimal or linearly independent, if none of its terms can be
written as a linear combination of the other vectors of the system.

4) The set of vectors A = {v1,v2, . . . ,vk} in a linear space V is
called a spanning system of the space V, if every vector of the space
can be written as a linear combination of the vectors of A.

5) A minimal spanning system of vectors in a linear space is called
a basis (of this space).

6) If a linear space has a basis consisting of finitely many vectors,
the space is called finitely dimensional.

Theorem 1. All bases in a finitely dimensional space V consist of the
same number of vectors. This number is called the dimension of the
space V.

The simplest and most familiar example of a linear space is the family
of geometric vectors in R2. Fix a plane, which represents all the Eu-
clidean planes in the world, and two perpendicular lines in this plane,
a horizontal line, which we call the X coordinate axis or the abscissa



9

axis, and a vertical line, called the Y , or the ordinate axis. Their cross-
ing point O is the origin of the system of coordinates. Now, if we pick
any point P in the plane and consider its orthogonal projections1 onto
the coordinate axes, we find the two numbers, xP and yP , called the
coordinates of the point P .

The pair
(xP , yP)

is called an ordered pair, since the pair (xP , yP) represents another
point (unless (xP = yP)).

Given a coordinate system, any point in the plane can be represented
as an ordered pair of real numbers P = (xP , yP). And vice versa, for
every ordered pair of real numbers (x, y), we can find the unique point
in the plane, whose coordinates are these numbers.

2

4

−2

1 2 3 4 5 6−1−2−3−4

X

Y

O

P(4, 3)

xP = 4

yP = 3

Figure 1. Geometric vectors and their projections in R2.

The vectors ı = (1, 0) and ȷ = (0, 1) make the standard basis in R2.
Any vector v = (x, y) can be written as a linear combination of the
basis vectors v = xı + yȷ), and this representation for each vector is
unique.

Problem 3. Prove that the pairs ı,−ȷ and ı, ı+ ȷ make other bases in
R2. Give two more examples of bases in R2.

1It is useful in many problems to dispense with the orthogonality, but the or-
thogonal coordinate systems are easier to work with.
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The same procedure works in any n−dimensional vector space, where
each vector can be written as an ordered n−tuple of its coordinates,
that is, of its projections onto coordinate vectors.

Problem 4. A triple of vectors {i = (1, 0, 0); j = (0, 1, 0); k = (0, 0, 1)}
is called the standard basis in R3. Prove that it is indeed a basis.

Problem 5. The Treasury issues the following coins: 1 penny, 1 nickel,
1 dime, 1 quarter, 1 half-dollar, and 1 dollar. Can we describe the
monetary system of this example as a linear space? Which sub-systems
of the system above make spanning systems in the set of all possible
amounts of money? Which sub-systems are minimal? Are there bases
among these sub-systems?

Problem 6. Answer the same questions with regard to the paper bills
in existence.

2.2. Examples - n−Dimensional Vectors and Matrices. We have
considered in the previous section the familiar objects – two-dimensional
and three-dimensional vectors, making the classical Euclidean spaces
R2 and R3, which were studied in school geometry. Quite similarly,
it is possible to consider ordered collections of n items, often called
n−tuples or n−vectors. If the items are real numbers, the set of all
these n−vectors is called the n−dimensional Euclidean space and de-
noted as En or2 Rn; we will use the latter symbol.

Problem 7. Prove that for any n = 1, 2, 3, . . ., Rn is an n−dimensional
vector space. Its standard basis consists of unit vectors (called orts)
(e1, e2, . . . , en), where the vector ek, k = 1, 2, . . . , n has a 1 at the kth

place, and all its other components are 0.

Problem 8. Give other examples of bases in Rn.

As the next example, we consider matrices with real entries. We
remind that a k × l matrix is a rectangular array consisting of k rows
and l columns, k ·l elements in total. Denote the set of all k×l matrices
with real elements as Mk×l.

Problem 9. Prove that the set Mk×l is k · l−dimensional vector space.
Find its dimension and the standard basis. Find two other bases in this
space.

Prove that the space Mk×l of k · l−matrices can be put in a one-to-
one correspondence with the Euclidean space of vectors Rn of dimension
n = k · l.

2E stands for Euclides and R for the real numbers.
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2.3. Two-pixel Example. This very simplistic example will be useful
when later on we study how images are appeared on TV or computer
screens. Consider a rectangle consisting of two unit squares with ex-
actly one common side, see Fig. 2, where each square can be either
black (B) or white (W).

Figure 2. Two-pixel Example.

Figure 3. The Basis Vectors (B −W ) on the Left and
(W − B) on the Right for the Two-pixel Example.

Therefore, there are 2×2 = 4 possible configurations, (B−B), (B−
W ), (W − B), and (W − W ). This finite, 4-element set can be made
into a two-dimensional vector space over Z2 (this set was defined in the
paragraph between Problems 1 and 2) as the field of scalars, with the
basis vectors (B −W ) and (W − B) shown in Fig. 3, and operations
induced from Z2. For example, (B −B) = 1Λ(W − B)V 1Λ(BW ).

Problem 10. Verify the other properties of the vector spaces in this
example.

This example shows that if we split any picture into small parts (pix-
els) we can treat any image as a vector in a certain finitely-dimensional
space of simple images.

2.4. Example - RGB. Consider another less familiar example. Isaac
Newton observed in 1672, that a triangular glass prism can separate
white light into 7 rainbow colors,
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Red, Orange, Yellow, Green, Blue, Indigo, Violet

Therefore, these colors can be viewed as spanning vectors in the set of
all colors in our world. It turned out, however, that we do not need all
these 7 colors, so that this set is not minimal. It is enough to have only
the three basic colors, Red, Green, and Blue, see Fig. 3; this system is
called RGB additive system of colors 3. For example, Yellow color is
generated by superimposing the Red, and Green, while combining all
the three basic colors we will get White.

However, no two of theRed, Green, Blue triple can make the whole
rainbow, thus, these three colors make a minimal spanning system in
the space of colors.

Problem 11. Is the set of colors and their hues as a vector space?

A caveat is that we know how to mix only colors with positive coef-
ficients. however, the set of positive real numbers is not a field. There-
fore, we cannot ’subtract’ colors 4. Whence, it is not a linear space;
this algebraic system is called a cone.

The bottom of the human eye, the retina, contains special cells, called
rods and cones. The rods measure the luminance, that is, the intensity
of light seen by the eye. The cones measure the chrominance, that is,
the intensity of colors, comprising the incoming light. Apparently, our
mother-nature has known the RGB-theory for millennia, since there
are three kinds of cones, each measuring separately the intensity of
Red, Green, and Blue colors.

2.5. Example - Algebraic Polynomials. Polynomials are functions
that can be represented by a finite sum of whole powers of a certain
indeterminate, say, t, as

P (t) = a0 + a1t+ a2t
2 + · · ·+ akt

k + · · ·+ ap−1t
p−1 + apt

p,

where a0, a1, . . . , ap are numerical, real or complex coefficients, and p
is a nonnegative integer number, called the degree of polynomial P (t);
we assume that ap ̸= 0, that is, the degree is exactly p. In this text we
consider only polynomials with real coefficients and assume that t can
change in the infinite interval −∞ < t < ∞.

3There are many applets online demonstrating addition and subtraction of col-
ors. Just type ’color addition’ ’color space’, and Google brings them up. You can
experiment with

4However, together with the additive systems like RGB, there are subtractive
color systems.
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Figure 3. RGB color diagram

(http://en.wikipedia.org/wiki/RGB color model, accessed on 01/15/2015)

The family of the polynomials of degree exactly p is not a linear
space, since, for example, the sum of two quadratic polynomials

(x2 + x+ 1) + (−x2 + 1) = x+ 2

is a linear rather than quadratic polynomial.

Problem 12. 1) Prove that the set of polynomials of degree at most n
with real coefficients is a linear space of the dimension n+1; we denote
this space as Pn.

2) Prove that the system of powers {1, t, t2, . . . , tn} is a minimal span-
ning system in Pn, that is, a basis. Give another example of a basis in
Pn.
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3) Is the system {1, t2, t3, . . . , tn} minimal in the space Pn? A span-
ning system in Pn? A basis?

Problem 13. Prove that the set of polynomials Pn can be put in a
one-to-one correspondence with the Euclidean space Rn+1.

By the definition of a basis, any element of a linear space can be
written as a linear combination of the basis vectors; moreover, due
to the minimality this combination is unique. Thus, any algebraic
polynomial of degree at most n is the unique sum of the powers

1 = t0, t, t2, . . . , tn−1, tn

with certain coefficients depending on the polynomial. However, if a
family of vectors is a spanning but not minimal system, there may be
several linear combinations representing the same vector. The coeffi-
cient of xk is the magnitude (positive, negative, or zero) of the projec-
tion of the polynomial onto the xk−axis, that is, onto the subspace of
the monomials proportional to xk.

Problem 14. Check that the system {1, t, 1 + t} is spanning but not
minimal in P1. thus, it is not a basis in P1. For example, show that
the 0 has at least two different representations through these vectors.

On the other hand, the system {1, t2} is minimal but not spanning
in P2.

A basis of a vector space cannot precisely represent elements of a
larger, ambient space.

Problem 15. Prove that no linear combination of the three vectors
(monomials) 1, t, t2 can be equal to t3 identically for all real t.

Otherwise, the cubic polynomial at3 + bt2 + ct+ d would have more
than three roots, which contradicts to the Fundamental Theorem of
Algebra, which implies that a non-trivial polynomial of nth degree has
at most n different real or complex roots.. It is sufficient also to observe
that the ratio t3 ÷ t2 tends to infinity with t.

However, if we restrict ourselves to a bounded set of t−values, say,
−1 ≤ t ≤ 1, we can give an estimation of the worst discrepancy between
t3 and quadratic polynomials. For instance, if we want to approximate
the simplest first-degree polynomial P (t) = t by zero-degree polynomi-
als, that is, by constants f(t) = a, over −1 ≤ t ≤ 1, then the maximum
error is max−1≤t≤1 |t − a| = |a| + 1, and its smallest value over all the
constants a is 1, attained for a = 0.

Problem 16. Prove this statement.
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Using more advanced techniques, the estimate can be extended onto
polynomials of arbitrary degree 5.

The algebraic polynomials are not periodic, thus they are not con-
venient when we deal with oscillating functions. In such problems,
trigonometric polynomials are more suitable.

2.6. Trigonometric Polynomials. The algebraic polynomials are lin-
ear combinations of the monomials tj, j = 0, 01, 2, . . .. Similarly, any
finite linear combination of the simplest trigonometric functions

(1) 1 = cos(0× θ), sin θ = sin(1× θ), cos θ, sin(2θ), cos(2θ),

sin(3θ), cos(3θ), . . . , sin(nθ), cos(nθ), . . . ,

(we consider only the combinations with real coefficients) is called a
trigonometric polynomial. The degree of a trigonometric polynomial is
the largest among the coefficients of θ. For example,

(2) 5− 6 sin 3θ + 4 cos 2θ

is the trigonometric polynomial of degree 3. The trigonometric function

sin θ − 2 sin2(θ)

is not a trigonometric polynomial as is, because the definition requires
the exponents to be 1, but it can be transformed as

(3) sin θ − (1− cos(2θ)) = cos 2θ + sin θ − 1,

therefore, it can be written as a trigonometric polynomial of degree 2.
The trigonometric function

(4) sin(
1

2
)θ

also is not a trigonometric polynomial, however, it becomes a trigono-
metric polynomial after a linear substitution θ = 2φ, and its smallest
positive period is 2π ÷ 1

2 = 4π.
Trigonometric polynomials are periodic functions; for example, the

smallest positive period of polynomial (3) is 2π, which is the least
common multiple of π and 2π.

Problem 17. Find the smallest positive period of (2) and that of the
general trigonometric polynomial (1) of degree n.

5See, for example, [2] for the detailed exposition of these problems.
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Problem 18. Prove that if λ > 0 is a constant, then the smallest
positive period of either of the functions

Sλ(θ) = sin(λθ) and Cλ(θ) = cos(λθ)

is 2π
λ .

Due to this periodicity, in what follows we restrict ourselves to the
interval (−π, π). Introduce the set Psin

m , consisting of the linear com-
binations of the sines of degree at most m,

{sin θ, sin 2θ, sin 3θ, . . . , sinmθ}

and the set Pcos
m , consisting of the linear combinations of cosines of

degree at most m,

{1, cos θ, cos 2θ, cos 3θ, . . . , cosmθ}.

Problem 19. 1) Prove that the set Psin
m is a linear space of the dimen-

sion m consisting of odd trigonometric polynomials, and the set Pcos
m is

a linear space of the dimension m+1 consisting of even trigonometric
polynomials.

2) The function f(x) = x is odd; does it belong to Psin
m ?

3) The function g(x) = |x| is even; does it belong to Pcos
m ?

4) Prove that for 0 < θ < π the system

{sin θ, . . . , sin(mθ)}

is a minimal spanning system, that is, a basis in Psin
m , while the system

{1, cos θ, . . . , cos(mθ)}

is a basis in Pcos
m . Give other examples of bases in these spaces.

2.7. A Special System of Trigonometric Functions. To develop
the Discrete Cosine Transform (DCT), we need a special basis in the
8-dimensional Euclidean space R8.

For a positive integer n, let us consider n trigonometric functions

Bk(t) = cos

(
kπ

n
t

)
, k = 0, 1, . . . , n− 1.

Since cos 0 = 1, Bk(0) = 1 for any k and n, the function B0 is constant,
B0 ≡ 1, and (see Problem 14?) every function Bk(t), k ̸= 0, is periodic
with the smallest positive period 2π÷kπ

n = 2n
k . The functionsBk are not

trigonometric polynomials, for the coefficients of t are not, in general,
integer numbers, but in applications in this module they behave like
the polynomials, since they can be made into polynomials by a linear
change of variable – see an example after equation (4?).



17

We are mostly concerned with the case n = 8; the corresponding
functions B0(t) − B7(t) for 0 ≤ t ≤ 8 are shown in Fig. 3 - Fig. 6. It
is worth mentioning that each function Bk, k = 0, 1, . . . , 7, has k zeros
within the range 0 ≤ t ≤ 8.

0
1

−1 8
t t

8

Figure 4. Trigonometric functions B0(t) = 1 and
B1(t) = cos

(
π
8 t
)
, 0 ≤ t ≤ 8.

0
1

−1 8
t t

8

Figure 5. Trigonometric functions B2(t) = cos
(
2π
8 t

)

and B3(t) = cos
(
3π
8 t

)
, 0 ≤ t ≤ 8.

0
1

−1 8
t t

8

Figure 6. Trigonometric functions B4(t) = cos
(
4π
8 t

)

and B5(t) = cos
(
5π
8 t

)
, 0 ≤ t ≤ 8.

0
1

−1 8
t t

8

Figure 7. Trigonometric functions B6(t) = cos
(
6π
8 t

)

and B7(t) = cos
(
7π
8 t

)
, 0 ≤ t ≤ 8.

We need also the shifted functions Ck(t) = Bk(t+ 1/2), that is,

(5) Ck(t) = cos

(
kπ

8
(t+ 1/2)

)
= cos

(
kπ

8
t+

kπ

16

)
, k = 0, 1, . . . , 7,

graphed in Fig. 7 - Fig. 10. The elementary trigonometric identities

(6) cos(x± y) = cos x cos y ∓ sin x sin y
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show that these functions are linear combinations of the stretched trigono-
metric polynomials cos

(
kπ
8 t

)
and sin

(
kπ
8 t

)
, k = 1, 2, . . . , 7. Similarly

to Bk, every function Ck, k = 0, 1, . . . , 7, also has k zeros within the
range 0 ≤ t ≤ 8, or within −1/2 ≤ t ≤ 15/2.

Problem 20. Prove trigonometric identities (6?)-(7?).

0
1

−1 8
t t

8

Figure 8. Trigonometric functions C0(t) = 1 and

C1(t) = cos
(

t+1/2
8 π

)
, 0 ≤ t ≤ 8.

0
1
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Figure 9. Trigonometric functions C2(t) =

cos
(

2(t+1/2)
8 π

)
and C3(t) = cos

(
3(t+1/2)

8 π
)
, 0 ≤ t ≤ 8.
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Figure 10. Trigonometric functions C4(t) =

cos
(

4(t+1/2)
8 π

)
and C5(t) = cos

(
5(t+1/2)

8 π
)
, 0 ≤ t ≤ 8.
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Figure 11. Trigonometric functions C6(t) =

cos
(

6(t+1/2)
8 π

)
and C7(t) = cos

(
7(t+1/2)

8 π
)
, 0 ≤ t ≤ 8.

For non-integer α, the trigonometric function y = cos(αt) is not a
trigonometric polynomial, however, it preserves their many important
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properties. In particular, it is periodic with the smallest positive period
of 2π

α . It is even for any real α. However, Ck(t), k > 0, are not even
functions; because of the shift in the argument, t + 1/2 instead of t.
They are ”even” with respect to the vertical line t = −1/2, that is,
their graphs are symmetrical with respect to this vertical line.

One can prove in different ways that the functions Ck, k = 0, 1, . . . , 7,
are linearly independent over the interval 0 ≤ t ≤ 8. The proof is
shortest if we notice that these functions are eigenfunctions of certain
ordinary differential operator [8]. An elementary, but a bit cumbersome
direct proof is also possible, for there are enough convenient points be-
tween 0 and π, where the 8 cosine functions, taken at any combination,
vanish.

Problem 21. Prove directly that the system of functions {Ck(t)}, k =
0, 1, . . . , n− 1, is linearly independent for −1/2 ≤ t ≤ 15/2.

Problem 22. Prove that the set of all linear combinations with real
coefficients of the functions C0(t)−C7(t), where 0 ≤ t ≤ 8, or, what is
equivalent, for −1/2 ≤ t ≤ 15/2, is a linear space; we denote it as L8.

We know which geometrical vectors in R2 or R3 are orthogonal (or
perpendicular), this relationship is understood in the sense of classical
Euclidean geometry. In general vector spaces, like L8 though, where
we do not have our natural visual intuition, the notion of perpendicular
vectors must be explicitly defined. It turns out that the two vectors,
f(t) and g(t), a < t < b, must be defined orthogonal if the integral of
their product is zero, that is,

∫ b

a

f(t) g(t)dt = 0.

In particular, two functions f, g ∈ L8 are orthogonal, if

(7)

∫ 15/2

−1/2

f(t) g(t)dt = 0.

Problem 23. 1) Prove that the two functions Bk and Bl are orthogonal
if k ̸= l, and are not orthogonal if k = l.

2) Similarly, the functions Ck and Cl with different k and l are or-
thogonal, and are not orthogonal if k = l.

3) Hence, Ck, k = 0, 1, . . . , 7 make a basis in L8.
4) Are the functions Bk and Cl orthogonal?

Problem 24. However, cos(2mπt), m = ±1,±2, . . ., is orthogonal to
every Ck, so that we cannot expand this function against the basis of
Ck in L8. Therefore, cos(2mπt) ̸∈ L8
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3. More Mathematics Relevant to Transmitting
Information. Cardinality and Transformations

Let us go back to the beginning of this module. The acoustical waves
carry information and bring it to the listener’s ears. Acoustical waves
are oscillations of the air pressure, they evolve in time, and we can
graph them in Cartesian coordinates as pressure vs. time. Thus, the
acoustical waves are familiar mathematical functions, functions of time.
However, they also carry information, and because of that, engineers
call them signals ; we will use these two terms, functions and signals,
interchangeably, as synonyms.

3.1. Intermezzo on the Cardinality of Infinite Sets. It is a conve-
nient place here for another mathematical intermezzo, about the num-
ber of elements of a set. We have no problem with the finite sets, say,
the number of students in the classroom – we can just count them.
However, time intervals, even as short as one second, contain infinitely
many points, that is, real numbers marking time moments. But how
to measure infinity?

We are in a situation, mathematicians have encountered many times
before; indeed, we have a method for solving certain problems (find the
number of elements in a finite set), but the method does not work for
more general problems (for infinite sets). One way to deal with this
problem is to try to invent another method, equivalent to the known
one in an old, simpler setting, but working in more general cases. The
procedure that works in our current problem, is called a one-to-one
correspondence.

We can compare finite sets by the number of their elements. Say, our
left hand has five fingers, and our right hand has five fingers; therefore,
both hands have an equal number of fingers, or these two sets of fingers
have the same number of elements. However, two sets can be compared
without direct enumerating their elements, just by putting them in a
one-to-one correspondence. Indeed, we do not have to count fingers to
conclude that we have the same amount of fingers on our left hand as on
the right hand; it suffices to place one hand on the other. This method
works for the infinite sets as well. We can conclude, for example, that
there are exactly as many even (or odd) integer numbers, as all the
integer numbers, even if this may initially look counter-intuitive.

Two sets are said to have the same cardinality, if they can be put into
a one-to-one correspondence with one another. Using this approach, we
can classify infinite sets and compare them with regard to the ”num-
ber”, the cardinality of their elements. It turns out that infinite sets
may have different cardinalities. Paraphrasing G. Orwell [4], ”All the
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infinities were created equal, but some of them are more infinite than
others”.

Any set, which has the same cardinality as the set of natural numbers
N = {1, 2, 3, . . .}, that is, again, can be put in a one-to-one correspon-
dence with N, is called a countable set. This is the smallest cardinality
of an infinite set.

Problem 25. 1) Prove that the sets of even or odd integer numbers,
prime numbers, perfect squares, complex numbers with integer compo-
nents, integer-valued points in Rn are countable.

In more advanced mathematical textbooks you can find a proof that
it is impossible to put any countable set in a one-to-one correspondence
with the set of real numbers, or even with the set of points comprising
the interval [0, 1]. It is said that any non-empty interval of real num-
bers, like (0, 1), in particular, a time interval, like one second, has the
cardinality of continuum, which is incomparably more than the cardi-
nality of the set of natural numbers. The sets of natural, or integer, or
rational numbers are countable sets. The intervals of the real line have
bigger cardinality than countable sets.

Problem 26. What is the cardinality of the set of complex numbers?
Of the set of points of the three-dimensional space? Of the polynomials
with real coefficients? Of the polynomials with rational coefficients?

3.2. Analogous and Digital Signals. When acoustical signals are
transmitted by way of the classical radio or telephone technology (inductors-
resistors-capacitors connected by wires), it is said to be an analogous
signal. This technology has its limitations. We discussed in the pre-
vious section that any time interval contains continuum-many points,
thus if we want to transmit an analogous signal precisely, without any
distortion, we must transmit continuum-many numbers, which likely
requires infinite time. Therefore, it is unfeasible to transmit the anal-
ogous signals precisely using their representation as functions of time.

There exists another representation of waves, though. Any wave,
in particular, acoustical wave has also another description. Waves are
functions of time, but also they are carriers of energy. The energy
is carried through by the components, sub-waves of the signal having
different frequencies. In musical terms, there is the basic tone and there
are overtones. The bridge between the two representations is known as
the Fourier transform, called after French physicist and mathematician
Joseph Fourier. This transform represents the signals, that is, functions
of time, as combinations of simpler signals having different frequencies.
The prism of Newton that we described above, performs the Fourier
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transform and shows the frequencies composing the white light. The
frequencies make the spectrum of a signal. When we enjoy music, we
hear these sounds-frequencies together; many people with good hearing
can distinguish, to some extent, these frequencies. Spectroscopes, like
Newton’s prism, do it precisely.

It is known that in the first, linear approximation the waves of dif-
ferent frequencies are linearly independent. They, so to say, ”don’t see”
one another, and go through one another independently, without any
interference. This fundamental property of linear independence of the
elementary frequencies is called the Principle of Superposition. And
again, to use the Principle of Superposition, analogous signals must be
digitized.

By digitizing (visual) information we mean changing its representa-
tion as continuous functions (of time, space, etc.) to discrete represen-
tation, that is, to strings of digits. In doing that we proceed in two
steps, first, by sampling the original information, and second, by quan-
tizing the numbers created at the first step. These steps are discussed in
more detail in the following sections. Digital technology, which exploits
these discrete representations, can transmit huge amounts of informa-
tion faster and with far less distortion than analogous devices. If we
would have endless resources, we could achieve perfect transmission.

3.3. Fourier and Cosine Transform. Mathematically, the Fourier
and similar transforms are integrals of the signals as functions of time
or frequencies. The kernels of these integrals contain trigonometric,
that is, periodical functions. Acoustical and electromagnetic waves are
also superpositions of periodical oscillations, hence it is quite natural
to use these transformations to represent, to process, and to transmit
acoustical and visual information.

Under some conditions, the Fourier integrals become trigonometric
series, such as, for instance, the cosine-series

f(t) =
∞∑

k=0

ak cos(kt).

Here only the coefficients ak are specific for the signal f(t), the func-
tions cos(kt) are universal, linearly independent vectors in the linear
space of signals.

However, the Fourier transform may be inconvenient in certain prob-
lems, for it is complex-valued, while physical quantities are real-valued.
In many problems it is preferable to employ the real-valued ”half” of
the Fourier transform, that is, either the cosine transform or the sine
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transform. With regard to transmitting the information, the former
has definite advantages that will be discussed later. That is why many
current standards for transmission and compression of information, like
JPEG (Joint Photographic Experts Group), MPEG (Moving Picture
Experts Group), GIF (Graphic Interchange Format), etc., are based on
the discrete version of the classical cosine transform, called DCT (Dis-
crete Cosine Transform). We first discuss the classical (continuous)
cosine transform.

Given a signal, that is, a function f(t) of a variable t, 0 ≤ t < ∞,
its (Fourier) cosine transform is the function F (ω) of the frequency
variable ω, given by the integral

(8) F (ω) = F [f ](ω) =

(
2

π

)1/2 ∫ ∞

0

f(t) cos(ωt)dt.

For the improper integral (6) to exist, the function f must decay fast
enough, otherwise we have to use distributions and other mathematical
tools beyond the level of this module.

The integral transforms, like the Laplace transform, the Fourier
transform, the cosine transform and others are valuable in many prob-
lems because they simplify certain advanced mathematical operations.
For example, linear ordinary differential equations with constant co-
efficients, being Laplace transformed, become algebraic (polynomial)
equations, which can be solved much easier than the differential equa-
tions. However, after solving the derived algebraic equation, we want
to return to the original functions, that is, we need the inversion for-
mulas. The advantage of the cosine transform (8) is that its inverse
transform (9) looks exactly as the direct one given by,

(9) f(t) =

(
2

π

)1/2 ∫ ∞

0

F (ω) cos(ωt)dω.

The factor (2/π)1/2 is a normalization constant, it is chosen so that to
make formulas (8)-(9) symmetric.

Problem 27. Let f be a (fast enough) decaying function, for example,
f(t) = 1/(1 + t2), or f(t) = e−αt, or even a discontinuous function
f(t) = 0 if a < t < ∞, and f(t) = 1 if t < a < ∞, and f(a) = 1/2,
where a is a positive parameter. Verify formulas (8)-(9) by a direct
calculation.

The choice of the value f(a) = 1/2, the proof of the fact that formula
(9) indeed inverts the cosine transform (8) and vice versa, and the
formulation of the precise conditions of the validity of inversion (8)-(9)
is beyond the scope of this text.
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So far so good, but where is the digital technology, information, etc.?
We are close. The reader has definitely noticed that both equations (8)-
(9) involve functions defined over the infinite interval [0,∞), thus, to
use the Fourier-cosine transformation, we must know continuum-many
values of a function in the integrand, which is problematic. To deal
with this obstacle, we firstly notice that human beings normally can
hear frequencies from about 12 Hz to 20 000 Hz. One Hertz (Hz) is
the frequency of one complete oscillation per second. Thus, from the
point of view of human perception, we can safely cut away, just remove
both ’tails’, below 12 Hz and above 20 000 Hz. But there is more to
the story.

3.4. Interpolation and Sampling. The interval, (12, 20 000) has, as
any other interval, the cardinality of continuum. Thus, we seem to
have the same problem as before, namely, we have to process contin-
uum many function values. However, mathematicians had discovered
the solution still centuries back, well before the digital age, when the
need to transmit huge amounts of information was not imminent. Let
x1, x2, . . . , xn, xn+1 be any pair-wise distinct real or complex numbers.
Still in 1779, British mathematician Waring proved that any polyno-
mial of degree n

P (x) =
n∑

k=0

akx
k

can be represented through its values at the points xi, i = 1, . . . , n, n+
1, called sampling or interpolation points or nodes, by the formula

(10) P (x) = P (x1)f1(x) + P (x2)f2(x) + · · ·+ P (xn+1)fn+1(x),

where
f(x) = a(x− x1)(x− x2) · · · (x− xn)(x− xn+1)

is a polynomial of degree n + 1 with roots at the nodes, a ̸= 0 is a
constant factor, and for j = 1, 2, . . . , n, n+ 1,

fj(x) =
f(x)

(x− xj)f ′(xj)
=

=
(x− x1) · · · (x− xj−1)(x− xj+1) · · · (x− xn+1)

(xj − x1) · · · (xj − xj−1)(xj − xj+1) · · · (xj − xn+1)
.

Polynomials fj are called the fundamental interpolation polynomials
with nodes xj, because they depend only on the nodes xj, but not upon
any polynomial P (x). Later, formula (10) was rediscovered by Euler
and Lagrange (1795) independently, and is called now the Lagrange’s
interpolation formula.
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We remark that a polynomial of nth degree has n + 1 coefficients
a0, a1, . . . , an, so that to find them, we need n+ 1 conditions, given by
the values of P (x) at the n+ 1 nodes of interpolation.

Let us consider a couple of simple special cases of (10). If n = 1,
then the sum in (10) contains only two terms,

P (x) =
x− x2

x1 − x2
P (x1) +

x− x1

x2 − x1
P (x2),

and can be recognized as the equation of the line through the points
(x1, P (x1)) and (x2, P (x2)). We see that given two points

(x1, P (x1)), (x2, P (x2)),

this formula interpolates, that is, recovers the values of the linear poly-
nomial P (x) at all other, even complex points x.

Let be next n = 2, thus, we are given 3 points, (x1, P (x1)), (x2, P (x2))
and (x3, P (x3)). Since the coefficients are quadratic polynomials, the
formula now recovers the unique parabola, going through the given
three points in the plain.

Problem 28. If n = 2, there is an exceptional case, when the quadratic
trinomial does not exist; more precisely, it degenerates into a simpler
function. Study this case separately.

Problem 29. What is the meaning of the formula when n = 0?

Problem 30. Consider the case n = 3.

Formula (10) evaluates the value of the polynomial P (x) at any point
x, through the values of P at the points xk, k = 1, 2, . . . , n + 1, that
is why it is called the interpolating formula. We reiterate that the ra-
tional functions in the formula are universal, in the sense that they do
not depend on any polynomial but only upon the nodes of interpola-
tion {xi, 1 ≤ i ≤ n + 1}. Solely the factors P (xi) depend upon the
polynomial P . Thus, if the signal to be transmitted is a polynomial of
n−th degree and the nodes x1, x2, . . . , xn+1 are known in advance, we
do not have to transmit continuum, nor even countably many numbers,
we are to transmit only the n+ 1 numbers P (x1), P (x2), . . . , P (xn+1),
since the coefficients

f1(x) =
(x− x2)(x− x3) · · · (x− xn+1)

(x1 − x2)(x1 − x3) · · · (x1 − xn+1)
,

f2(x), . . . , fn(x) are the same for any n−th degree polynomial and can
be computed and stored in advance.
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This process is called the (algebraic) Lagrange interpolation, since it
involves the algebraic polynomials. However, both acoustical and opti-
cal signals are carried by waves, that is, by periodic processes; thus, we
are interested in interpolation of signals by trigonometric polynomials,
discussed in Subsection 5.4.

3.5. Intermezzo about the WKS Theorem. Formulas, similar to
(8), are valid for functions, which are much more general than polyno-
mials. The following result, stated here without some details, is often
called the Whittaker-Kotel’nikov-Shannon (WKS) sampling theorem,
after the three mathematicians, who independently discovered it in
1915, 1933, and 1949 years, respectively. It is also called Nyquist or
Ogura formula.

Theorem 2. If f is a square-integrable function such that the Fourier
transform (F [f ])(ω) = 0 whenever6 |ω| > L > 0, then for every real or
complex number x

(11) f(x) =
∞∑

−∞
f
(nπ
L

) sin(Lx− nπ)

Lx− nπ
.

This result states that under the conditions above, which verify in
many important applications, a continuous signal f , defined over a
finite or infinite interval, can be precisely recovered by making use of the
interpolation series (11) (called also cardinal series). The coefficients

sin(Lx− nπ)

Lx− nπ
,

similarly to formula (10), do not depend on the function f , they can
be stored in hardware at the receiver’s end in advance. Only the sig-
nal values at the sampling nodes π

Ln do matter. Thus, if we want to
transmit the signal f , we have to send only a countable set (not a
continuum!) of the function values f(nπ/L), −∞ < n < ∞.

What is more, if this is an acoustical signal, human beings do not
hear the higher frequencies anyway, so that we have to deal only with
frequencies limited to finite interval, and after the sampling we get a
finite set of values of the signal. We have to transmit only a finite set of
sampled function values. And even if the information is distributed over
the whole number line, the information carried by higher frequencies
is often either completely negligible as in the case of speech, or can be
neglected without a noticeable distortion of the result.

6Such functions are called ”band-limited functions.” A function f(x) is called
’square-integrable’ on the real axis, if the improper integral

∫∞
−∞ |f(x)|2dx is

convergent.
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An important corollary of the WKS-Nyquist theorem claims that if
the transmitted signal is composed of signals with different frequen-
cies, and the largest of these frequencies is fmax, then to insure perfect
(lossless) reconstruction, we can sample the signal with any frequency
bigger than 2fmax, called the Nyquist frequency.

We presented here only a simplest version of the WKS-theorem. It
can be extended onto more general classes of functions, than the band-
limited functions; the sampling points can repeat and do not have to
make an arithmetic progression, and other restrictions can be relaxed.
The electromagnetic waves, can be treated by similar techniques. In
the sequel sections we are concerned with transmission of visual infor-
mation. We show in more detail how certain mathematical ideas, in
particular, linearity, trigonometry, and interpolation work in the image
transmission.

4. Transmitting Optical Images

Our world is filled with many colors, however, as was explained
above, to make any color, it is enough to have just three basic ones
– Red, Green, and Blue, abbreviated as RGB. It is clearly seen when
one prints color pictures by making use of a modern photo-printer -
paper goes through the printer three times. After the first pass we see
a one-colored (monochromatic) image, where it is difficult to recognize
the picture is being printed. After the second pass, the picture is more
recognizable, but the colors still look distorted. After the third pass
the good picture, close to the original one, appears on paper.

Hence, to get a full-colored image, it is enough to decompose a pic-
ture into three monochromatic images, corresponding to the three basic
colors, then to transmit each of these three components separately, and
finally to assemble these three images into one color picture. Because
of that, from now on we consider the transmission of monochromatic
images. Moreover, we can safely assume that we transmit a black-and-
white picture, where every point has a certain degree (or shade) of
grayness.

However, as we discussed above, the analogous technology cannot
deliver the signals of very high quality and cannot transmit very large
amounts of the information with big speed, which is required by modern
life. It turns out though that the digital technology is able to resolve
these issues. Hence, the question is, how to ’digitize’ the image, so that
we are to transmit not analogous signals, but the digits, the strings of
zeros 0 and ones 1. A very few words about technology are in order.
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4.1. Pixels. The screen of any modern device (camera, computer mon-
itor, TV set, cell phone, etc.) physically consists of many very small
elements, like dots, called pixels (=picture elements). When we shot
a picture of an object, the light reflected by the object, falls on the
screen of the camera, and every pixel receives its portion of the light,
that is, a certain amount of energy.

The electronics behind (or inside) the screen measures the luminance,
which is a technical term for the intensity of grayness of every pixel
measured on scale from 0 to 1, where 0 and 1 denote the extreme
cases; 1 usually corresponds to the absolutely black pixel, because it
did not get any energy, and 0 to the absolutely white pixel, but it can
be another way. This scale is divided into 256 = 28 levels (shades) of
grey. The electronics measures the luminance of every pixel as a whole
number between 0 and 255 inclusive. Therefore, the system creates the
array (matrix) of whole numbers between 0 and 255. Each pixel on
the screen is represented by an entry of the matrix. For example, if
the intensity of a pixel is measured as a half of the maximal intensity,
the corresponding entry of the matrix is 1

2256− 1 = 127. This matrix
shows the luminance of the screen image.

The entries of the matrix are written in the binary place-value sys-
tem, that is, as 8-element strings of 0s and 1s, from 010 = 000000002
through 25510 = 111111112, where the subscript indicates the base, dec-
imal 10 or binary 2, of the number system used. If the image is colored,
electronics creates three matrices, representing the intensity (chromi-
nance) of the three basic colors (RGB) for each pixel of the screen.
Thus, from mathematical point of view, every pixel is an 8−digit, or
8−bit binary integer number.

Problem 31. Prove that there are exactly 28 = 256 different 8−digit
binary numbers.

If you have a TV with the resolution of 1920 × 1080, which means
1920 pixels per row and 1080 pixels per column, the screen contains
2 073 600 pixels, and it receives 50-60 frames a second. So that, every
second the system receives and has to process about 80 billions of bits
of information.

We arrive finely to our main question: how to transmit this huge
amount of information preserving the good quality and in limited time?
To achieve this goal, modern communication systems compress the in-
formation by making use of its redundancy, meaning that certain el-
ements of most images can be safely discarded before transmission,
either because these elements do not affect our human perception, or
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because they can be recovered from the remaining elements. As we
know, in the case of audio transmission people do not hear the fre-
quencies beyond the interval 12 Hz - 20000 Hz, and in the case of
visual transmission people cannot distinguish (resolve) details, which
are too close to each other.

What is more, the neighboring pixels are usually correlated, that
is, both their luminance and chrominance have close values, and can
be satisfactory predicted if we know nearby values. It should be re-
marked here, that in most cases grayness does not change abruptly,
there is significant correlation between the shades of neighboring pix-
els. The procedure of removing the redundancy of an image is called
de-correlation. The Discrete Cosine Transform (DCT) is widely used,
because it can satisfactory de-correlate images.

5. Discrete Cosine Transform

5.1. Technological Intermezzo. A few mathematical topics, we need
in our discussion, have been already introduced, and now we show how
they work together in the main topic of this module: reliable and
fast transmission of very large amounts of information, either with no
distortion at all, this is called the lossless transmission, or with an ac-
ceptable distortion, which is called the lossy transmission. From now
on, we concentrate on the transmission of visual information. But be-
fore talking mathematical issues, very few words are in order about
technology.

Say, you want to send out an image, for instance, a picture taken by
your phone. The software divides the entire image into squares of size
8×8 pixels, called data units or macro-blocks ; this is the most common
current format. For every macro-block, the electronics produces an 8×8
matrix of luminance values for each of its 64 pixels, with the entries
being the whole numbers from 0 to 255 inclusive. Since 256 = 28, even
in the case of monochromatic image, every pixel generates 8 bits =
1 byte of information, thus, one macro-block produces 64 bytes, and
every instance the whole screen sends millions and millions of bytes of
information.

However, since the system must transmit the information from all the
macro-blocks simultaneously, we often do not have enough resources,
say memory, to have both the high quality and high speed of transmis-
sion. The size of a macro-block, 8 × 8, was chosen after experiments
as a compromise, the trade-off, which is always present in applications.
On the one hand, it allows to essentially compress the information to
be transmitted, and on the other hand, it preserves the quality of the
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images transmitted, so that our eyes cannot notice that the picture on
screen is slightly differs from the original one. Of course, it is possi-
ble to increase the transmission speed by sacrificing the quality of the
image, or vice versa, to improve the quality by reducing the speed.

5.2. DCT. A mathematical tool for compressing the information to
be transmitted was developed by Ahmed, Natarajan and Rao in 1974
[1], it is called Discrete Cosine Transform (DCT). DCT is used for
compressing information by many current standards, including JPEG,
MPEG, GIF, etc., it compresses the data from each macro-block into
a smaller array of numbers, carrying essentially the same important
information. DCT is a matrix transformation. It takes on a matrix of
intensities, described in Sect. 4.1, and transforms it before transmitting
into another matrix. The system then simplifies the new matrix by re-
placing some its entries with zeros, and transmits only this compressed
matrix. At the receiving end, the system applies the inverse DCT,
producing an image we see on the screen.

Matrix transformations, like DCT, are realized by multiplying the
given matrix on both sides by some known universal matrices, which
we do not have to transmit.

Before defining DCT and studying its properties, we consider the
following extremely simplified example, the 8×8 integer-valued matrix
of intensities of some model block,

X =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

25 25 25 25 25 25 25 25
25 25 25 25 25 25 25 25
25 25 25 25 25 25 25 25
25 25 25 25 25 25 25 25
25 25 25 25 25 25 25 25
25 25 25 25 25 25 25 25
25 25 25 25 25 25 25 25
25 25 25 25 25 25 25 25

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

The entries of this matrix express energetic content of the 64 pixels,
comprising a model macro-block, such that all of its pixels have the
same luminance. To see why DCT is useful, we apply the DCT of size
8 to this matrix, first without any explanation, which will follow. The
DCT transform of this matrix is
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DCT (X) =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

200 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

We know that any entry of the original matrix represents, in certain
units, the amount of energy, received by the pixel corresponding to
this entry. Moreover, the total energy of a micro-block is represented
by the sum of squares of the entries of the intensity matrix. Now we
observe that except for the just one entry on the top-left of the matrix,
all the other elements of the transformed matrix are zeros. It is not
by chance. This property of DCT is called the energy compaction
or energy concentration. Since the entries of this matrix represent
the energy contents of the pixels of the data unit, we see that in this
example DCT concentrated the energy of the whole block into just one
entry.

Certainly, in real examples we cannot expect that all but one ele-
ments vanish, but in practice most of the elements of this matrix carry
little energy; in other words, they carry very little information. Hence,
they can be neglected, replaced with zeros without significantly distort-
ing the result.

The reason for that is, in particular, the redundancy of real images -
neighboring pixels are often strongly correlated : if we know the inten-
sity of a pixel, we can predict, with the good probability, the intensity
of its neighbors. DCT reduces this redundancy, it de-correlates the
image.

The DCT matrix is orthogonal, it satisfies the equation, called the
Parseval relation. Namely, it preserves the sum of squares of the en-
tries of a matrix subject to an orthogonal transformation; this sum of
squares represents the energy (or the variance) of the system before
and after transformation. For instance, in the simple example above,
the sums of the squares of the entries of the given matrix X and the
transformed matrix DCT (X) both are equal 252 × 64 = 2002. Hence,
DCT redistributes the energy between different frequencies without any
loss, compacting the energy closer to the low frequencies.

To compress the image even more, we can notice, that our vision is
more sensitive to changes in lower frequencies, thus, the transformed
signal emphasizes more important information, while giving less stress
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to less important, lower frequency details.

To see intuitively, how DCT concentrates the energy, let us look
at the following Fig. 12. This is a modified Fig. 1, where the new
coordinate axes X ′ − Y ′ are the standard axes, rotated in positive
direction, counter-clock wise.

2

4

−2

3 6−3

X

Y

O

X ′
Y ′

P(4, 3)

xP = 4

yP = 3

Figure 12. Geometric vectors and their projections in
R2. The dashed lines make the rotated coordinate system
X ′ − Y ′.

In the standard coordinates, the point P has coordinates (4, 3) com-
parable in magnitude with its distance to the origin, which is 5. In
the rotated coordinates X ′ − Y ′, though, the Y ′-coordinate vanishes.
This is the fundamental property of the DCT – it treats the original
8×8−matrix as a vector in the 64−dimensional space (Recall Problem
9) and rotates the coordinate axes so that the most of components of
the vector become small. Later on, we discuss how the DCT computes
the basis vectors of the rotated axes. Whence, the DCT solves one
of the basic problems of the Linear Algebra, it computes the transfer
matrix from one basis to another one.

In a sense, the energy concentration feature of DCT follows from
an elementary property of the cos−function: for 0 ≤ x ≤ π/2 it is
monotonically decreasing from 1 = cos(0) to 0 = cos(π/2).

Another elementary property of the cosine function, which makes it
so useful in signal processing, is itsevenness, that is, cos(−x) = cos x
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for all real (and also complex) x. Indeed, after computing the DCT
of a signal in the frequency domain, we want to return back to the
representation of the signal as a function of time. One of the fastest
ways to numerically invert the DCT is by making use of the well-
developed algorithms of the Fast Fourier Transform (FFT). Since the
function cosx is even, this can be easily done by extending the DCT
from an interval (0, a) onto the symmetric interval (−a, 0). There may
be other considerations, leading to symmetry with respect to another
vertical line, say x = −1/2, instead of x = 0.

The squares are 2-dimensional images, so that in practice we have
to deal with 2-dimensional transformations. However, the squares are
direct (Cartesian) products of two linear segments, therefore, the 2-
dimensional DCT is separable, it reduces to two consecutive 1-dimensional
DCTs. To compute the DCT of a matrix, we can first find the 1-
dimensional DCT of every row of the matrix, and then compute the 1-
dimensional DCT of columns of the resulting matrix. Because of that,
we study now in more detail the mathematics of the 1-dimensional
DCT.

5.3. One-Dimensional DCT. The 1-dimensional DCT applies to an
8−vector and recomputes it into another 8−vector. As a matter of
fact, there are 8 discrete cosine transforms, DCT-I through DCT-VIII,
having slightly different properties [8]. The transform we are dealing
with, is DCT-II introduced in [1]. It is often called the DCT, because
it is, probably, the most widely used version of DCT.

We now concentrate on our major topic – the mathematics of the
DCT. So that, we can forget about pixels, luminance, etc., and work
with a given 8−vector, whose eight elements are whole numbers be-
tween 0 and 255 inclusive. If the picture is polychromatic, there are
three matrices, the separate intensities (chrominance) of Red, Green,
and Blue colors.

We define the transformation of 8−dimensional signals, that is, the
DCT of length 8 only, but the construction can be straightforwardly
extended to any natural number n ≥ 2 [7]. By tradition, the indices
go from 0 through 7, rather than from 1 through 8.

In the following formulas AT stands for the transposed vector (or the
transposed matrix) of a vector (a matrix) A; for a row n−vector

A = (a1, a2, . . . , an),
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its transpose AT is a column n−vector

AT =

⎛

⎜⎜⎝

a1
a2
...
an

⎞

⎟⎟⎠ ,

and vice versa.

The ”T” in DCT stands for ”Transform”, DCT is a transformation
of real, that is with real components, n vectors into real n vectors as
follows. If n = 8, the definition is as follows.

Definition 3. The DCT of a real-valued column vector of length 8,

U = (u0, u1, . . . , u7)
T ,

is the real-valued column vector, also of length 8,

(12) V = DCT (U) = (v0, . . . , v7)
T ,

with the components

v0 =
1

2
√
2

7∑

i=0

ui

and for k = 1, 2, . . . , 7,

vk =
1

2

7∑

i=0

ui cos

(
k(i+ 1/2)

8
π

)
=

1

2

7∑

i=0

uiCk(i),

where the weights Ck, defined by equation (6?) in Sect. 2.6, are
evaluated at point i. The numbers vk are called the DCT transform
coefficients.

Thus, the DCT V = V(U) of an 8−vector U is a weighted lin-
ear combination of cosine-functions having different frequencies, with
the coefficients ui being the amplitudes of the component signals with
those frequencies. Another way, the components of image-vector V are
”trigonometrically weighted” components of the data vector U. The
component v0 is called the DC average of the signal, the other compo-
nents are called AC 7 components.

7After Direct Current and Alternating Current.
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The definition in 8-dimensional case can be conveniently written
down by making use of the matrix

C =
1

2

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

1√
2

1√
2

· · · 1√
2

cos π
16 cos 3π

16 · · · cos 15π
16

cos 2π
16 cos 6π

16 · · · cos 30π
16

· · · · · · · · · · · ·
· · · · · · · · · · · ·

cos 7π
16 cos 21π

16 · · · cos 105π
16

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

,

whose entries are the trigonometric functions Ck(t), sampled at the
points ti = (i + 1/2)π. Now the image-vector V (or the image-matrix
if we consider all the 8 column-vectors for a macro-block) is computed
as the matrix product

(13) VT = C ·UT .

Definition 4. The matrix M is called orthogonal if it satisfies the
equation

M ·MT = I,

I being the identity matrix.

This equation immediately shows that an orthogonal matrix is non-
singular; moreover, its determinant is ±1.

Problem 32. Prove that the definition of an orthogonal matrix can be
stated as M−1 = MT .

Problem 33. Prove by a direct computation that the DCT matrix C
above is orthogonal. A few known trigonometric identities can be of
use, for instance, for k = 1, 2, . . . ,

(14) cos
kπ

16
+ cos

3kπ

16
+ cos

5kπ

16
+ · · ·+ cos

15kπ

16
= 0.

Problem 34. Prove (14) and extend it for any n = 2, 3, ....

Problem 35. Prove that a transformation given by the orthogonal ma-
trix satisfies Parseval’s relation, that is, the sum of the squares of the
entries of the original matrix and the transformed matrix is the same.

Let us consider examples.

Example 1. Let be

U = (α,α,α,α,α,α,α,α),
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where α is a real constant. By Definition 3, and due to Problem 33,
we have

(15) VT = C×UT = α
(
2
√
2, 0, 0, 0, 0, 0, 0, 0

)T

.

Example 2. Let
U = (1, 0, 1, 0, 1, 0, 1, 0).

Now we have

C×UT =
1

2

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2
√
2

cos(π/16) + cos(5π/16) + cos(9π/16) + cos(13π/16)

0

cos(3π/16) + cos(15π/16) + cos(27π/16) + cos(39π/16)

0

cos(5π/16) + cos(25π/16) + cos(45π/16) + cos(65π/16)

0

cos(7π/16) + cos(35π/16) + cos(63π/16) + cos(91π/16)

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

and rounding to the nearest thousandth,

(16) C×UT =
(√

2, 0.255, 0; 0.301, 0, 0.450, 0, 1.281
)T

.

Example 3. Let
U = (0, 1, 0, 1, 0, 1, 0, 1).

In this case

V = C×UT =
α

2

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2
√
2

cos(3π/16) + cos(7π/16) + cos(11π/16) + cos(15π/16)

0

cos(9π/16) + cos(21π/16) + cos(33π/16) + cos(45π/16)

0

cos(15π/16) + cos(35π/16) + cos(55π/16) + cos(75π/16)

0

cos(21π/16) + cos(49π/16) + cos(77π/16) + cos(105π/16)

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(17) =
(√

2,−0.255, 0,−0.301, 0,−0.450, 0,−1.281
)T

.

The data in these three examples are strongly correlated, that is,
they follow a certain pattern; if you know only two elements of the
given vector, you can precisely restore the whole vector. Thus, the
results show good energy compaction. Now we consider an example
with random, uncorrelated data.
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Example 4. Let U = (1, 2, 15, 0, 5, 6, 7, 255). Multiplying the matrices
and rounding off the results to the integers; we compute

v0 =
1√
8

7∑

k=0

uk ≈ 151,

v1 = (1/2)
7∑

k=0

uk cos

(
1(k + 1/2)

8
π

)
≈ −87

v2 = (1/2)
7∑

k=0

uk cos

(
2(k + 1/2)

8
π

)
≈ 88

v3 = (1/2)
7∑

k=0

uk cos

(
3(k + 1/2)

8
π

)
≈ −174

v4 = (1/2)
7∑

k=0

uk cos

(
4(k + 1/2)

8
π

)
≈ 34

v5 = (1/2)
7∑

k=0

uk cos

(
5(k + 1/2)

8
π

)
≈ −56

v6 = (1/2)
7∑

k=0

uk cos

(
6(k + 1/2)

8
π

)
≈ 116

v7 = (1/2)
7∑

k=0

uk cos

(
7(k + 1/2)

8
π

)
≈ 39.

The computations are elementary though cumbersome, and intended
only as a demonstration of the method. There are powerful software
packages computing DCTs, e.g., in MatLab and in Mathematica; see
also [3].

Problem 36. Find the DCT of the vectors U = (1, 1, 1, 1, 0, 0, 0, 0)
and U = (0, 0, 0, 0, 1, 1, 1, 1).

Let us compare the first and the fourth examples. In the first exam-
ple, the components are equal, that is, they are again highly correlated,
they can be predicted if we know only one of them, and the energy com-
paction is perfect. In the last example, the components of the vector
are random, they are not correlated, thus the redistribution of energy
is not obvious, but even in this example the sum of squares of the first
four frequencies contains 78% of the sum of all the eight frequencies.
These examples show again why the DCT is so useful and widely used
– this transformation essentially decreases the redundancy of the image
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and allows us to transmit much less digits, while preserving the good
quality of the image.

Problem 37. Compare the results in the Examples 1, 2, and 3; what
is the relationship between equations (15), (16), and (17)? What about
the results of Problem 36?

The sum of the DCT vectors (16) and (17) in Examples 2 and 3 is
the vector (15) of Example 1. This is not a coincidence, since the given
vectors in these examples satisfy the same relation, and as it follows
from equation (13), DCT is a linear operator, that is, for any vectors
U′,U′′ and any constants α, β,

DCT (αU′ + βU′′) = αDCT (U′) + βDCT (U′′).

5.4. Trigonometric Interpolation. There is very visible geometry
behind the ability of the DCT to compact energy. Since we want to
use trigonometric functions, it is natural to consider the segment [0, π]
as the domain of the functions, and to divide this interval into 8 equal
parts, because we consider the 8-vectors,

[
0,

π

8

]
,

[
π

8
,
2π

8

]
, . . . ,

[
7π

8
, π

]
.

Given an 8-vector of the luminance values, (uo, u1, . . . , u7), we interpo-
late them by a trigonometric polynomial. The nodes of interpolation
are still free, and different choices lead to different DCTs. In particular,
if we choose the middle points of these intervals,

π

16
,
3π

16
, . . . ,

15π

16
,

we recognize here the arguments of the basis DCT vectors cos
(
2k+1
16 π

)
,

which form the DCT-matrix C, see p. 35. Thus, we arrive at the DCT,
that is, DCT-II.

Define now the trigonometric functions

Pk(t) = cos

(
k(t+ 1/2)

8
π

)
, k = 0, 1, . . . , 7,

which are trigonometric polynomials up to the stretching/compressing
and shifts in the arguments.

Every component vi of the DCT-vector V in Eqn. (12) is a sample of
the trigonometric polynomial of degree 8. Indeed, for i, k = 0, 1, . . . , 7,

cos

(
k(i+ 1/2)

8
π

)
= cos

(
k(t+ 1/2)

8
π

)
if t = i.
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Due to the shift t + 1/2 in the argument, the trigonometric func-
tions Pk(t) are not even, rather they are symmetric with respect to the
vertical line t = −1/2. We notice also that Pk(−1/2) = cos 0 = 1. It
turns out that the linear combination of the fundamental interpolating
polynomials Pk(t) is a polynomial, which interpolates the DCT-images
vi of the points ui. In the following straightforward proof we follow [6,
p. 287].

Theorem 3. If the vector V = (v0, . . . , v7)T is the DCT-transform of
the vector U = (u0, u1, . . . , u7)T , that is, V = C ·U, where the C is
the orthogonal matrix defined above, then the trigonometric function

P (t) =
1√
8
u0 +

1

2

7∑

i=1

ui cos

(
i(2t+ 1)

16
π

)

satisfies P (k) = vk, k = 0, 1, . . . , 7. Therefore, P (t) interpolates the
data {(0, u0), (1, u1), . . . , (7, u7)}.

To prove the theorem, it is enough to rewrite the equations above as
vector equations and use the orthogonality of the matrix C.

Problem 38. Write down the details of the proof.

5.5. IDCT and Quantization. In applications, the integral trans-
forms, including the DCT, are auxiliary tools. After computing the
DCT, we want to return back to the original image, maybe with certain
acceptable losses, so that, we need to have an inverse transform. In our
problem it is easy, since the DCT matrix C is orthogonal, therefore, it
is non-singular and can be inverted. Because of that, the Inverse DCT
(IDCT, for short) exists and can easily be shown to coincide with DCT
III. To compute the IDCT explicitly, we multiply the basic equation
VT = C ·UT by C−1 on the left, resulting in

UT = C−1 ·VT .

In coordinates, the IDCT is

ui =
1

2

7∑

k=0

Ckvk cos

(
(i+ 1/2)kπ

8

)
, i = 0, 1, 2, . . . , 7,

where

(18) C0 = 1/
√
2 and C1 = · · · = C7 = 1.

Problem 39. Apply the latter formulas to the examples 1-4 above; for
computations, set α = 1. starting with the computed values V, you
should get numerical results close to the given values U. Keep in mind
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that due to the inevitable rounding errors, the results can be slightly
different from vectors U.

An average image consists of millions of pixels, even in the monochro-
matic case we attribute to every pixel 8 bits of information, so that the
number of bits, we have to transmit, is huge. To use the energy com-
paction efficiently, after the matrix of the DCT frequency coefficients is
computed, the system often makes what is called quantization, which
is a kind of rounding off the integers or decimals. While doing the
quantization, we change the original numbers to the integers.

The idea is a simple one. Our vision has a limited resolution. If we
change a few digits, especially pertinent to high-frequency harmonics,
some information is lost, but the image will experience a very small,
negligible distortion. Between, say, 0 and 1 there are 10 001 steps of
the size 0.0001. If we know from experiments or theory, that our eyes
can resolve two numbers, only if the difference is at least, for eaxxmple,
0.01, we can safely shift the numbers between 0 and 0.01 to the closest
of these two decimals. Thus, instead of 10 000 steps we have just 100
steps and 100 numbers to transmit.

From experiments we know that the human eyes are less sensitive
to changes in chrominance than in luminance. This allows us to apply
stronger compression to the chrominance matrices than to the lumi-
nance one.

In practice, for example, in JPEG or similar standards, to quantize
the results the system just multiplies the matrix by a special matrix,
whose entries were chosen by experiments. Thus, we have many more
zeros and essentially less other digits to transmit.

For instance, consider again Example 4 and round off the DCT ma-
trix V to 5 places in binary system. Since 15110 = 100101122, we round
the latter to 100110002 = 15210, etc. Hence, we apply the IDCT to the
vector V̂ = (152,−88, 88,−176, 32,−56, 120, 40), that is, we compute

the product ÛT = CT ·̂ . After rounding, the result is the vector

Û = (.7, .8, 154,−1, 4, 8, 7, 257).

Except for the outlier 154, all the other coefficients are quite close to
the given vector U.

Problem 40. Recalculate this example preserving 6, 4, 3, 2, 1 binary
digits and compare the results.
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5.6. Two-Dimensional DCT. The one-dimensional DCT is useful,
for instance, in audio compression. However, in compression of im-
ages, which are two-dimensional, we need the two-dimensional8 DCT.
It works similarly to the one-dimensional DCT. Due to the separability,
the two-dimensional DCT uses the same matrix C and computes the
DCT of the entire data block U of luminance or chrominance values of
pixels as the matrix product,

V = C ·UCT .

If we again consider the 8 × 8 blocks, the entries of this product can
be explicitly written as

vi,j =
1

4
CiCj

7∑

l=0

7∑

k=0

uk,l cos

(
(2l + 1)jπ

16

)
cos

(
(2k + 1)iπ

16

)
,

where i, j = 0, 1, . . . , 7, and the coefficients Ci were defined in (18).
The double sum above can be rewritten as a repeated sum, therefore,
the two-dimensional DCT is separable, it is computed by first applying
the one-dimensional DCT to every row of the data matrix, and then
to every column of the new transformed matrix.

The basis vectors of the two-dimensional DCT are 8× 8 = 64 prod-
ucts of the 8 DCT basis functions Ck(t) in Fig. 8-11. If we recompute
these 64 functions in terms of degrees of grayness, we get the follow-
ing 64 patterns, representing 64 basis patterns (basis vectors) of the
2-dimensional DCT - see Fig. 13. The image of the whole macro-block
is composed of these 64 basis images exactly as in two-pixel example
in section 2.3 – see fig. 2 and 3.

The inverse two-dimensional DCT is also separable, it is given by
equations

uk,l =
1

4

7∑

i=0

7∑

j=0

CiCjvi,j cos

(
(2l + 1)jπ

16

)
cos

(
(2k + 1)iπ

16

)

for k, l = 0, 1, . . . , 7.

Problem 41. Let X = (xij) be a square matrix of order n with real
entries and Y = (yij) be its 2D-DCT. Let

Pn(s, t) =
2

n

n−1∑

k,l=0

akalyk,l cos

(
k(2s+ 1)π

2n

)
× cos

(
l(2t+ 1)π

2n

)
,

where a0 = 1/
√
2 and ak = 1 for k ≥ 1. Prove that

Pn(i, j) = xi,j, 0 ≤ i, j ≤ n− 1.

8Three-dimensional DCT was also studied in the literature.
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Figure 13. 2-dimensional DCT basis functions (basis
elementary images).

Problem 42. Finally, consider a two-dimensional example. Verify
that the 2D-DCT of the 8× 8−matrix

U =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

6 1 1 1 1 1 1 1
1 1 1 1 1 0 0 0
1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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is the following matrix 9

V =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

3.0008 2.3261 1.6333 1.5560 1.5004 1.0398 0.6764 0.4625
2.6688 1.2503 0.5250 0.5710 0.6936 0.3816 0.2162 0.2486
2.2305 1.0387 0.6766 0.6556 0.6533 0.4381 0.2803 0.2065
1.6260 0.7478 0.8581 0.7485 0.5880 0.5002 0.3554 0.1482
1.0003 0.4484 0.9800 0.7958 0.5001 0.5318 0.4059 0.0891
0.4851 0.2048 0.9663 0.7502 0.3929 0.5014 0.4002 0.0407
0.1584 0.0549 0.7801 0.5896 0.2706 0.3941 0.3231 0.0109
0.0208 −0.0014 0.4368 0.3254 0.1379 0.2175 0.1809 −0.0003

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Here, the sum of the squares of the given matrix U is 54, while that
sum for the transformed matrix V, rounded to the tenth, is 53.8.

Instead of quantizing the binary version of the matrix V, in this
example we round the latter matrix off to the nearest decimal integer,
which results in the following matrix V̂ with many zeros in the right-
bottom corner, V

V̂ =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

3 2 2 2 2 1 1 0
3 1 1 1 1 0 0 0
2 1 1 1 1 0 0 0
2 1 1 1 1 1 0 0
1 0 1 1 1 1 0 0
0 0 1 1 0 1 0 0
0 0 1 1 0 0 0 0
0 0 0 0 0 0 0 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Applying the IDCT to this matrix and rounding it off to the tenth,
we restore the approximation Û to the given matrix,

Û =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

6.5 1.1 −0.3 2.7 1.1 1.1 1.3 1.3
1.5 1.1 1.0 .9 1.1 0.3 −0.5 0.7
0.6 0.3 −0.1 −0.2 0.0 0.4 −0.3 0.1
1.1 −0.6 −0.2 0.4 −0.3 0.2 0.3 0.1
1.1 −0.3 0.2 0.7 0.2 0.0 −0.0 0.3
1.5 0.1 −0.1 0.3 −0.1 0.2 −0.0 −0.1
0.8 −0.3 0.1 0.3 −0.3 −0.1 −0.1 −0.3
0.9 −0.2 −0.3 0.1 0.0 0.0 −0.3 0.2

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Considering our very rough rounding (instead of quantization), this is
a quite good approximation to the original matrix U.

9To multiply the matrices in this example, we used the free online calcula-
tor at http://ww.bluebit.gr/matrix-calculator/ by BlueBit Software; accessed on
12/26/2014.
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