BRONX COMMUNITY COLLEGE

 of the City University of New York
DEPARTMENT OF MATHEMATICS \& COMPUTER SCIENCE MTH30 Review Sheet

1. Given the functions f and g described by the graphs below:

$$
y=f(x)
$$

$$
y=g(x)
$$

(a) Find:
i. The domain of f
ii. The range of f
iii. An open interval on which f is increasing
iv. An open interval on which f is decreasing
v. the local minimum of f
vi. Write the set of all x where $f(x)$ is negative in interval notation.
vii. Write the set of all x where $f(x)$ is positive in interval notation.
(b) Find:
i. The domain of g
ii. The range of g
iii. The x-intercept of g
iv. The y-intercept of g
v. An interval on which g is one-to-one
(c) Evaluate the following, if they exist:
i. $g(1)$
ii. $(f+g)(1)$
iii. $(f-g)(4)$
iv. $\left(\frac{g}{f}\right)(-1)$
v. $(f \circ g)(1)$
vi. $(g \circ g)(-5)$
vii. $(f \circ f)(3)$
2. Let $f(x)=\sqrt{x^{2}+4 x+4}$ and $g(x)=\frac{x^{2}-1}{\sqrt{1-x}}$.
(a) Find the domains of f and g. Give your answer using interval notation.
(b) Evaluate, if defined: $f(g(0)) ; g(f(0)) ;(f \cdot g)(0)$
3. Given the graph of $y=f(x)$, answer the following questions.

(a) Find the domain of f
(b) Find the range of f
(c) Over which open intervals is f increasing?
(d) Over which open intervals is f decreasing?
(e) Find $f(-3)$ and $f(4)$
(f) Find all solutions to the equation $f(x)=3$
(g) Find the zeros of the function.
(h) Does f have an inverse function? Explain.
4. For each of the functions f given below:
A. $f(x)=\frac{x}{x+1}$
B. $f(x)=e^{2 x-1}$
C. $f(x)=\log _{2}(3-x)$
(a) Find the inverse function f^{-1}.
(b) Verify that $f\left(f^{-1}(x)\right)=f^{-1}(f(x))=x$
(c) Sketch a graph of $y=f(x)$ and $y=f^{-1}(x)$ on the same set of coordinates.
5. Consider the functions: $f(x)=e^{x^{2}}$ and $g(x)=\sqrt{\ln x}$. Are f and g a pair of inverse functions? Justify your answer.
6. For each pair of functions f and g given below find $f \circ g$ and $g \circ f$.
(a) $f(x)=2 x^{2}-3 x+5 ; g(x)=5-2 x$.
(b) $f(x)=\frac{2 x}{x-5} ; g(x)=\frac{5 x}{x-2}$
(c) $f(x)=x^{2}-4 ; g(x)=\sqrt{x+5}$
7. Sketch the graphs of the following linear equations:
(a) $2 x-3 y=6$
(b) $x+4 y=8$
(c) $y=-\frac{1}{2} x+4$
(d) $y=2 x-3$
8. Find the slope of the lines described by the following information:
(a) With equation $y=\frac{2}{3} x+4$
(b) With equation $2 x-3 y=8$
(c) Passing through the points $(4,-2)$ and $(5,1)$
(d) Perpendicular to the line with equation $x-4 y=1$
9. Write an equation of the line described by the following information:
(a) With slope $-\frac{1}{2}$ and passing through the point $(3,-2)$
(b) Passing through the points $(2,-1)$ and $(-4,-3)$
(c) perpendicular to the line with equation $y=3 x-4$ and passing through $(1,9)$.
(d) Parallel to the line with equation $3 x-5 y=4$ and having the same y-intercept as the line with equation $x-4 y-8=0$.
10. Solve the systems:
(a) $\left\{\begin{array}{r}x+y=1 \\ 2 x-y=8\end{array}\right.$
(b) $\left\{\begin{array}{l}5 x-2 y=10 \\ 2 x-7 y=14\end{array}\right.$
(c) $\left\{\begin{array}{l}2 x+y=4 \\ 2 x-3 y=1\end{array}\right.$
11. For each of the the following quadratic functions $f(x)$:
A. $f(x)=(x-2)^{2}-1$
B. $f(x)=x^{2}+2 x-3$
C. $f(x)=-3 x^{2}-6 x-4$
(a) Find the vertex.
(b) State the domain of f.
(c) State the range of f.
(d) Find the x-intercept(s).
(e) Find the y-intercept(s).
(f) Write the set of all x where $f(x)$ is negative in interval notation.
(g) Write the set of all x where $f(x)$ is positive in interval notation.
(h) Sketch the graph of $y=f(x)$.
12. The graph of a parabola $y=f(x)$ has axis of symmetry $x=-1$, vertex $(-1,5)$, and $f(0)=3$.
(a) Write the equation of the parabola in standard form.
(b) State the domain and the range of f.
(c) Sketch a graph of $y=f(x)$.
13. For each of the the following polynomials $p(x)$:
A. $p(x)=x^{3}-3 x^{2}+4$
B. $p(x)=-x^{3}+4 x^{2}-x-6$
C. $p(x)=2 x^{4}+7 x^{3}+6 x^{2}-x-2$
(a) List all possible rational roots of $p(x)$, according to the Rational Zeros Theorem.
(b) Factor $p(x)$ completely.
(c) Find all roots of the equation $p(x)=0$.
(d) Determine the end behavior of the graph of $y=p(x)$.
(e) Determine the y-intercept of the graph of $y=p(x)$
(f) Determine the x-intercepts of the graph $y=p(x)$
(g) Determine the local behavior of $y=p(x)$ near the x-intercepts.
(h) Use the above information to sketch a graph of $y=p(x)$.
14. Find the remainder of the division of $x^{122}-20 x^{51}+60 x^{34}+1$ when divided by $x-1$.
15. For each of the following rational functions f
A. $f(x)=\frac{x^{2}+2 x+1}{x^{2}-x-2}$
B. $f(x)=\frac{x^{2}+2 x-3}{x^{2}-2 x-3}$
C. $f(x)=\frac{x^{2}-9}{x^{2}-x-2}$
D. $f(x)=\frac{2-x}{x^{2}+x-2}$
E. $f(x)=\frac{x^{2}}{x^{2}+1}$
(a) Factor numerator and denominator and simplify if possible.
(b) Find the x and y intercepts of the graph of $y=f(x)$ if they exist.
(c) Find any vertical or horizontal asymptotes.
(d) Determine how the sign of $f(x)$ changes.
(e) Use the above information to sketch a graph of $y=f(x)$.
16. For each of the following rational functions f
A. $f(x)=2^{x}+1$
B. $f(x)=3^{x+2}-4$
C. $f(x)=\log _{3}(x)-2$
D. $f(x)=\log _{2}(x+1)-1$
(a) Find the domain.
(b) Find the range.
(c) Find any vertical or horizontal asymptotes.
(d) Use the above information to sketch a graph of $y=f(x)$.
17. Solve the inequality and express the answer using interval notation.
A. $|2 x-1|>3$
B. $4|2-3 x|+2 \leq 6$
18. Evaluate the following expressions. Give exact values whenever possible:
(a) $\log _{2} \frac{1}{64}$
(b) $\log _{9} \frac{\sqrt{3}}{3}$
(c) $\log _{b} x^{3} y$, given that $\log _{b} x=2$ and $\log _{b} y=36$
(d) e^{x-y} given that $e^{x}=3$ and $e^{y}=4$
(e) $\log _{a}\left(\frac{x}{y}\right)$ given that $\log _{a}(x)=12$ and $\log _{a}(y)=4$
(f) $\ln e^{\sqrt{2}}$
(g) $\log 1000$
(h) $\log _{7} 31$, rounded to the nearest hundredth
(i) $\sin \frac{5 \pi}{4}$
(j) $\tan \left(-\frac{7 \pi}{6}\right)$
(k) $\cos \frac{13 \pi}{6}$
(l) $\sec \frac{8 \pi}{3}$
(m) $\sin ^{-1}\left(\frac{\sqrt{2}}{2}\right)$
(n) $\cos ^{-1}\left(-\frac{1}{2}\right)$
(o) $\sin ^{-1}\left(\sin \frac{\pi}{6}\right)$
(p) $\cos ^{-1}\left(\cos \frac{4 \pi}{3}\right)$
(q) $\cos \left(\sin ^{-1}(-1)\right)$
(r) $\sin (a+b)$, if $\sin a=\frac{1}{3}, \cos b=\frac{3}{5}$ and $0<a, b<\frac{\pi}{2}$
19. Find θ if
(a) $\cos \theta=\frac{\sqrt{3}}{2}$, and $\frac{3 \pi}{2}<\theta<2 \pi$.
(b) $\sin \theta=-\frac{1}{2}$, and $\pi<\theta<\frac{3 \pi}{2}$.
(c) $\sin \theta=\frac{\sqrt{2}}{2}$, and $\frac{\pi}{2}<\theta<\pi$
20. Solve the following equations:
(a) $\log _{2} x-\log _{2}(x-1)=1$
(b) $7^{x+2}=49$
(c) $\sin ^{2} x=\frac{3}{4}$, where x is in the interval $[0,2 \pi)$
(d) $2 \cos ^{2} x+3 \cos x+1=0$, where x is in the interval $[0,2 \pi)$
21. Verify the following identities:
(a) $\tan ^{2} x+1=\sec ^{2} x$
(b) $\csc x-\sin x=\cot x \cos x$
(c) $\csc x-\cos x \cot x=\sin x$
(d) $\cos ^{2} x-\sin ^{2} x=\frac{1-\tan ^{2} x}{1+\tan ^{2} x}$
22. For each of the following functions
A. $f(x)=-\sin (4 x-\pi)$
B. $f(x)=-3 \cos (2 x+\pi)$
C. $f(x)=2 \sin \left(3 x-\frac{\pi}{2}\right)$
D. $f(x)=\frac{1}{2} \cos \left(\frac{x}{2}-\frac{\pi}{2}\right)$
(a) Find the period of this function.
(b) Find the amplitude of the graph of $y=f(x)$
(c) Find the phase shift of the graph of $y=f(x)$
(d) Sketch two complete cycles of the graph of $y=f(x)$
23. x is in the standard position. Find $\tan x$ if $\cos x=\frac{3}{4}$, and the terminal side of x is in the quadrant IV.

The answers

1. (a) i. $[-1,4)$, ii. $[-4,5)$, iii. $(1,4)$, iv. $(-1,1)$, v. 1 , vi. $(-1,3)$, vii. $(3,4)$
(b) i. $[-5,5]$, ii. $(-2,5]$, iii. -1 and 1 , iv. -1 , v. $[-5,1)$ or $[1,5]$
(c) i. 0 , ii. -4 , iii. undefined, iv. undefined, v. -3 , vi 4 , vii -3
2. (a) Domain of f is $(-\infty, \infty)$, domain of g is $(-\infty, 1)$
(b) $f(g(0))=1 ; g(f(0))$ is undefined; $(f \cdot g)(0)=-2$
3. A. $(-7,4]$
B. $[-3,5] \quad$ C. $(-7,-3)$ and $(0,2)$
D. $(-3,0)$ and $(2,4)$
E. $f(-3)=5 ; f(4)=-3$
F. $\{-5,-2,2\}$
G. $-6,3$
H. No. It is not one-to-one.
4. For the graphs see Figure 1 .
A. $f^{-1}(x)=\frac{x}{1-x}$
B. $f^{1}(x)=\frac{\ln x+1}{2}$
C. $f^{-1}(x)=3-2^{x}$

(a)

(b)

(c)

Figure 1: The graphs of Question 4
5. They are not a pair of inverse functions: f is not one-to-one and thus it doesn't have an inverse function.
6. A. $(f \circ g)(x)=8 x^{2}-34 x+40 ;(g \circ f)(x)=-4 x^{2}+6 x-5$
B. $(f \circ g)(x)=x ;(g \circ f)(x)=x$
C. $(f \circ g)(x)=x+1 ;(g \circ f)(x)=\sqrt{x^{2}+1}$
7. For the graphs see Figure 2,

Figure 2: The graphs of Question 7
8. A. $\frac{2}{3}$
B. $\frac{2}{3}$
C. 3
D. -4
9. A. $x+2 y=-1$
B. $x-3 y=5$
C. $y=-\frac{1}{3} x+\frac{28}{3}$
D. $y=\frac{3}{5} x-2$
10. A. $(3,-2)$
B. $\left(\frac{42}{31},-\frac{50}{31}\right)$
C. $\left(\frac{13}{8}, \frac{3}{4}\right)$
11. (a) A. $(2,-1)$
B. $(-\infty, \infty)$
C. $[-1, \infty)$
(b) A. $(-1,-4)$
B. $(-\infty, \infty)$
C. $[-4, \infty)$
(c) A. $(-1,-1)$
B. $(-\infty, \infty)$
C. $(-\infty,-1]$

Answers to the remaining parts can be read from the graphs in Figure 3

Figure 3: The graphs in Question 11
12. A. $y=-2(x+1)^{2}+5$
B. Domain is $(-\infty, \infty)$, Range is $(-\infty, 5]$

C. See Figure 4

Figure 4: The parabola of Question 12
13. (a) A. $\{ \pm 1, \pm 2, \pm 4\}$
B. $\{ \pm 1, \pm 2, \pm 3, \pm 6\}$
C. $\left\{ \pm 1, \pm 2, \pm \frac{1}{2}\right\}$
(b) A. $(x+1)(x-2)^{2}$
B. $(x+1)(2-x)(x-3)$
C. $(x+1)^{2}(x+2)(2 x-1)$
(c) A. $x=-1, x=2$
B. $x=-1, x=2, x=3$
C. $x=-1, x=-2, x=\frac{1}{2}$

Answers to the remaining parts can be read from the graphs in Figure 5

Figure 5: The graphs in Question 13
14. By the Remainder Theorem the answer is 42 .
15. (a) A. $\frac{x+1}{x-2}, x \neq-1$
B. $\frac{(x+3)(x-1)}{(x+1)(x-3)}$
C. $\frac{(x+3)(x-3)}{(x-2)(x+1)}$
D. $\frac{2-x}{(x+2)(x-1)}$
E. $\frac{x^{2}}{x^{2}+1}$

Answers to the remaining parts can be read from the graphs in Figure 6 and Figure 7

Figure 6: The first four graphs of Question 15

Figure 7: The fifth graph of Question 15
16. (a) A. $(-\infty, \infty)$
B. $(-\infty, \infty)$
C. $(0, \infty)$
D. $(-1, \infty)$
(b) A. $(1, \infty)$
B. $(-4, \infty)$
C. $(-\infty, \infty)$
D. $(-\infty, \infty)$
(c) A. $y=1$
B. $y=-4$
C. $x=0$
D. $x=-1$
(d) See the graphs in Figure 8

Figure 8: The graphs of Question 16
17. A. $(-\infty,-1) \cup(2, \infty) \quad$ B. $\left[\frac{1}{3}, 1\right]$
18. A. -6
B. $-\frac{1}{4}$
C. 42
D. $\frac{3}{4}$
E. 8
F. $\sqrt{2}$
G. 3
H. 1.76
I. $-\frac{\sqrt{2}}{2}$
J. $-\frac{\sqrt{3}}{3}$
K. $\frac{\sqrt{3}}{2}$
L. -2
M. $\frac{\pi}{4}$
N. $\frac{2 \pi}{3}$
O. $\frac{\pi}{6}$
P. $\frac{2 \pi}{3}$
Q. 0
R. $\frac{3+8 \sqrt{2}}{15}$
19. A. $\frac{11 \pi}{6}$
B. $\frac{7 \pi}{6}$
C. $\frac{3 \pi}{4}$
20. A. $x=2$
B. $x=0$
C. $x=\frac{\pi}{3}, x=\frac{2 \pi}{3}, x=\frac{4 \pi}{3}, x=\frac{5 \pi}{3}$
D. $x=\pi, x=\frac{2 \pi}{3}, x=\frac{4 \pi}{3}$
21. To prove these identities, use algebra and the basic identities

$$
\begin{aligned}
\csc \theta & =\frac{1}{\sin \theta} \\
\sec \theta & =\frac{1}{\cos \theta} \\
\cot \theta & =\frac{1}{\tan \theta} \\
\tan \theta & =\frac{\sin \theta}{\cos \theta} \\
\cos ^{2} \theta+\sin ^{2} \theta & =1
\end{aligned}
$$

22. (a) A. $\frac{\pi}{2}$
B. π
C. $\frac{2 \pi}{3}$
D. 4π
(b) A. 1
B. 3
C. 2
D. $\frac{1}{2}$
(c) A. $\frac{\pi}{4}$
B. $-\frac{\pi}{2}$
C. $\frac{\pi}{6}$
D. π

The graphs are as follows:

Page 13

23. $-\frac{\sqrt{7}}{3}$

IP. YH, NEA, TK Apr 2022

Page 14

