BRONX COMMUNITY COLLEGE Of the City University of New York DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE

SYLLABUS: MTH21 – SURVEY OF MATHEMATICS 1 [3 credits, meets 3 hours per week]

PREREQUISITE: MTH 5 or equivalent; corequisite ENG 2 and/or RDL 2, if required

TEXT: "Mathematics, A Practical Odyssey," by D. Johnson and T. Mowry, 8th edition CENGAGE Learning, 2014

This course may be used to satisfy Category B/Mathematical and Quantitative Reasoning of CUNY Pathways Required Core.

Learning Objectives: On successful completion of this course, students will be able to

1) Understand the advantages of place-value numeration systems.

EA / Fall 2017 incl CLOs

- 2) Use the language of sets (membership, union, intersection and complement) to analyze and solve problems.
- 3) Predict experimental outcomes using basic techniques of probability (permutations, combinations, counting techniques, tree diagrams).
- 4) Use linear and quadratic functions to model real-world problems, and understand the significant differences between the two models.
- 5) Manage personal finances through a basic understanding of financial instruments such as loans, mortgages, and annuities.

umber Systems and Number Theory (3 week	ks) Suggested homework
1 Place systems	Problems 1-33 (odd).
2 Addition and subtraction in different ba	ses Problems 1-23 (odd)
Multiplication and division in different (divison is optional)	, ,
5 Fibonacci numbers and the Golden Rati	o Problems 1, 3, 5, 9, 11 (if discussed in class)
es and Counting (3 weeks)	
1 Sets and set opertations	Problems 1, 7, 9, 17 – 25 (odd), 29, 41-49 (odd)
2 Applications of Venn diagrams	Problems 1, 3, 5, 27-31 (odd)
3 Introduction to combinatorics	Problems 1, 5, 15, 17, 23-35 (odd)
Permutations and combinations	Problems 1, 3, 5, 13, 1, 19-37 (odd), 49, 53
bability (3 weeks)	
History of probability (optional)	If time permits, in class do some hands on
2 Basic terms of probability	exercises from the exercises section.
	Problems 1-28 (all).
	Problems 11-25 (odd), 47-53 (odd).
Combinatorics and probability	Problems 1-13 (odd), 21
ance (3 weeks)	
Simple interest	Problems 5-19 (odd), 37.
2 Compound interest	Problems 1-19 (odd), 29, 31, 35.
Annuities	Problems 1,3, 5, 9, 19.
near Programming (2 weeks)	
2.0 Review of linear inequalities	Problems 1-19 (odd)
2.1 The geometry of linear programming	Problems 1-11 (odd)