Bronx Community College of City University of New York Department of Mathematics and Computer Science

MATH 15 REVIEW SHEET

1. Integrate

(a)
$$\int 2^{3x} dx$$
 (b) $\int_{1}^{2} xe^{3x^{2}} dx$ (c) $\int \ln x dx$ (d) $\int x^{2} e^{x} dx$ (e) $\int \tan(4-5x) dx$ (f) $\int_{0}^{\pi} \sin^{2} x dx$ (g) $\int \frac{dx}{3\sqrt{x}}$ (h) $\int 5t\sqrt{1-2t^{2}} dt$ (i) $\int \frac{2x}{x^{2}-1} dx$ (j) $\int \frac{2x^{2}+2x+1}{x^{2}} dx$ (k) $\int \frac{\sqrt{9-x^{2}}}{x^{4}} dx$ (l) $\int \frac{dx}{\sqrt{x^{2}+2}}$ (m) $\int_{1}^{e} \frac{11}{x} dx$ (n) $\int \frac{\ln x^{2}}{x} dx$ (o) $\int_{-3}^{3} \frac{\cos x}{x} dx$

- 2. Find the both average and the root-mean-square value of $f(x) = x^2$ in the interval [3,6].
- 3. A point start with initial speed $v_x = 3t$, $v_y = -2$ at the point (2,3) and moves along a curved path with x and y acceleration of $a_x = \cos t$ and $a_y = 4t^2 5$. Write the expression for the x and y components of displacement and what is the displacement when t = 2.
- 4. For the curves in (a) and (b), answer the following: (i) Find the volume generated by rotating the first-quadrant area bounded by the curves about the x-axis; (ii) Find the centroid of volume of revolution about the x-axis; (iii) Let a water tank be the volume generated as in (i), suppose the tank is full, how much work is needed to pump the water to a height of 5 units above the tank.

(a)
$$y = x^{5/2}$$
, $x = 1$ and $x = 2$ (b) $y = \sin x$, $x = 0$ and $x = 3\pi/4$

- 5. Find the area between the curves $y = x^4 x^2$ and y = 2.
- 6. For the following curves, answer the following: (i) Find the intersection points of the curves; (ii) Find the area bounded by the intersection points of the curves; (iii) Find the centroid of the region bounded by the curves; (iv) Find the volume generated by rotating the area bounded by the curves about the y-axis.

(a)
$$y^2 = x$$
 and $y = x^3$ (b) $y = \cos x, y = \sin x \text{ for } x \in [0, 2\pi].$

- 7. Find the area bounded by $y = x\sqrt{1+x}$ from x = 1 to 7 using (a) midoint method;
 - (b) trapezoid method; (c) Simpson's Rule, for each above method, use 6 panels of equal length.
 - (d) Find the exact value of area using integration.
- 8. Find the general solution to each differential equation.

(a)
$$y' = x^2 y^5$$
 (b) $\sqrt{1+x^2} dy + xy dx = 0$ (c) $y' + 2xy = x$ (d) $y'' = \cos 2x$ (e) $5y'' + 7y' - 6y = 0$ (f) $y'' - 2y' + 2y = 0$

- 9. Find the particular solution to each differential equation.
 - (a) $xy' = 4x^4 y$ given that y = 2 when x = 1.
 - (b) $y' \sin y = \cos x$ given that $x = \pi/6$ when y = 0.
 - (c) y'' + 3y' + 2y = 0 given that y = 1 and y' = 2 when x = 0.

Use the ratio test to determine, if possible, if each series converges or diverges. 10.

(a)
$$1 - \frac{1}{2!} + \frac{1}{4!} - \frac{1}{6!} + \dots + \frac{(-1)^n}{(2n)!} + \dots$$

(a)
$$1 - \frac{1}{2!} + \frac{1}{4!} - \frac{1}{6!} + \dots + \frac{(-1)^n}{(2n)!} + \dots$$

(b) $1 + \frac{2^2}{2!} + \frac{3^3}{3!} + \frac{4^4}{4!} + \dots + \frac{n^n}{n!} + \dots$ (c) $1 + \frac{4}{7} + \frac{9}{49} + \dots + \frac{n^2}{7^{n-1}} + \dots$

(c)
$$1 + \frac{4}{7} + \frac{9}{49} + \dots + \frac{n^2}{7^{n-1}} + \dots$$

Write four terms of a Taylor series for each function expanded about a=1. 11.

(a)
$$f(x) = e^{x^2}$$

(b)
$$f(x) = \sqrt{x}$$

Answer

(a)
$$\frac{8^x}{\ln 8} + C$$

(b)
$$\frac{e^{12} - e^3}{6}$$

(c)
$$x \ln |x| - x + C$$

(b)
$$\frac{e^{12} - e^3}{6}$$
 (c) $x \ln|x| - x + C$ (d) $e^x(x^2 - 2x + 2) + C$

(e)
$$\frac{\ln|\cos(4-5x)|}{5} + C$$
 (f) $\frac{\pi}{2}$

(f)
$$\frac{\pi}{2}$$

$$(g) \frac{2\sqrt{x}}{3} + C$$

(h)
$$\frac{-5(1-2t^2)^{3/2}}{6} + C$$

(i)
$$\ln|x^2 - 1| + C$$

(j)
$$2x + 2\ln|x| - \frac{1}{x} + C$$

$$\text{(i) } \ln |x^2 - 1| + C \qquad \qquad \text{(j) } 2x + 2\ln |x| - \frac{1}{x} + C \qquad \text{(k) } (\frac{1}{27x} - \frac{1}{3x^3})\sqrt{9 - x^2} + C \qquad \text{(l) } \ln |\sqrt{x^2 + 2} + x| + C$$

(1)
$$\ln |\sqrt{x^2 + 2} + x| + C$$

(n)
$$(\ln |x|)^2 + C$$

2. The average = 21 and the root-square-mean = $\frac{9\sqrt{155}}{\sqrt{5}}$

3.
$$d_x = -\cos t + \frac{3}{2}t^2 + 3$$
 and $d_y = \frac{1}{3}t^4 - \frac{5}{2}t^2 - 2t + 3$; $d_x(2) = 9 - \cos 2$ and $d_y(2) = -5\frac{2}{3}$.

$$d_x(2) = 9 - \cos 2$$
 and $d_y(2) = -5\frac{2}{3}$.

(a) (i)
$$\frac{21\pi}{2}$$

(ii)
$$(\frac{254}{147}, 0)$$

(iii)
$$\frac{2,3257}{42}$$

(b) (i)
$$\frac{3\pi^2 + 27}{8}$$

(ii)
$$(\frac{9\pi^2 + 12\pi + 8}{8(3\pi + 2)}, 0)$$

(a) (i)
$$\frac{21\pi}{2}$$
 (ii) $(\frac{254}{147}, 0)$ (iii) $\frac{2,325\pi}{42}$ (b) (i) $\frac{3\pi^2 + 2\pi}{8}$ (ii) $(\frac{9\pi^2 + 12\pi + 8}{8(3\pi + 2)}, 0)$ (iii) $\frac{\pi(9\pi^2 + 120\pi + 72)}{64}$

$$5. \quad \frac{56\sqrt{2}}{15}.$$

6.

(ii)
$$\frac{5}{12}$$

(ii)
$$\frac{5}{12}$$
 (iii) $(\frac{12}{25}, \frac{3}{7})$ (iv) $\frac{2\pi}{5}$

(iv)
$$\frac{2\pi}{5}$$

(b) (i)
$$(\frac{\pi}{4}, \frac{\sqrt{2}}{2})$$
 & $(\frac{5\pi}{4}, \frac{-\sqrt{2}}{2})$ (ii) $\sqrt{2}$ (iii) $(1 + \frac{\pi}{4}, \frac{\sqrt{2}}{2})$ (iv) $\frac{\sqrt{2}\pi^2}{2} + 2\sqrt{2}\pi$

(iii)
$$(1+\frac{\pi}{4},\frac{\sqrt{2}}{2})$$

(iv)
$$\frac{\sqrt{2}\pi^2}{2} + 2\sqrt{2}\pi$$

7. (a) 56.85012

(c)
$$56.94654$$
 (d) $\frac{604\sqrt{2}}{15} \approx 56.945666$

(a)
$$4x^3 + \frac{3}{y^4} = C$$

(b)
$$y = Ce^{-\sqrt{1+x^2}}$$

(b)
$$y = Ce^{-\sqrt{1+x^2}}$$
 (c) $y = \frac{1}{2} + Ce^{-x^2}$

(d)
$$y = \frac{-\cos 2x}{4} + C_1 x + C_2$$
 (e) $y = C_1 e^{0.6x} + C_2 e^{-2x}$ (f) $y = e^x (C_1 \cos 2x + C_2 \sin 2x)$

(e)
$$y = C_1 e^{0.6x} + C_2 e^{-2x}$$

(f)
$$y = e^x (C_1 \cos 2x + C_2 \sin 2x)$$

9. (a) $y = \frac{4x^4}{5} + \frac{6}{5x}$

(b)
$$2\cos y = -2\sin x + 3$$
 (c) $y = 4e^{-x} - 3e^{-2x}$

(c)
$$y = 4e^{-x} - 3e^{-2x}$$

10. (a) converges

(b) diverges

(c) converges

11. (a)
$$e(1+2(x-1)+3(x-1)^2+\frac{10(}{2}(x-1)^3)$$

(b)
$$1 + \frac{x-1}{2} - \frac{(x-1)^2}{8} + \frac{(x-1)^3}{16}$$