BRONX COMMUNITY COLLEGE of the City University of New York

DEPARTMENT OF MATHEMATICS & COMPUTER SCIENCE

MTH06 Review Sheet

1. Perform the indicated operations and simplify:

(a)
$$\frac{n^2 - 3n - 10}{n^2 + n - 2}$$
 (b) $\frac{1 + \frac{5}{3y}}{\frac{6}{2x} + \frac{5}{y}}$ (c) $\frac{2x^2 - x}{2x^2 + x - 1}$
(d) $\left(\frac{x^2 - 2xy - 3y^2}{x^2 - 9y^2}\right) \left(\frac{2x^2 - xy}{2x^2 + xy - y^2}\right)$ (e) $\frac{9ab}{3a + b} \div \frac{a^2 - 6a}{a^2 - 4a - 12}$ (f) $\frac{10}{x^2 - 5x} + \frac{2}{x}$
(g) $\frac{3}{n^2 - 5n - 36} - \frac{2}{n^2 + 3n - 4}$ (h) $\frac{1}{x - 3} - \frac{3}{3 - x}$ (i) $\frac{1}{6x(x - 2)^2} - \frac{1}{4x^2(x - 2)}$

2. Solve:

(a)
$$\frac{1}{2x-7} + \frac{x-5}{4x^2-49} = \frac{4}{6x-21}$$
 (b) $\frac{4}{5y-3} = \frac{2}{3y+7}$ (c) $n + \frac{1}{n} = \frac{53}{14}$

(d)
$$2 + \frac{4}{x-2} = \frac{8}{x^2 - 2x}$$

3. Simplify (express results with positive exponents only and rationalized denominators):

(a)
$$16^{-3/4}$$
 (b) $(4x^5y^{-2})^{-2}$ (c) $\frac{4\sqrt{12}}{\sqrt{5}}$ (d) $\sqrt{\frac{3}{8}}$

(e)
$$\sqrt[3]{\frac{27}{64}}$$
 (f) $\sqrt[3]{81x^3y^4z^7}$ (g) $\left(-8x^{-6}y^{12}\right)^{1/3}$

4. Perform the indicated operations and simplify:

(a)
$$3\sqrt{20} - \sqrt{5} - 3\sqrt{45}$$
 (b) $\sqrt[3]{3} + 2\left(\sqrt[3]{24}\right) - 6\left(\sqrt[3]{81}\right)$ (c) $-4\sqrt{2}\left(2\sqrt{5} - 3\sqrt{6}\right)$

(d)
$$\left(2\sqrt{6} + 3\sqrt{5}\right)\left(\sqrt{8} - 3\sqrt{12}\right)$$
 (e) $\frac{\sqrt{7}}{3\sqrt{2} - 5}$ (f) $\frac{\sqrt{12}}{4} + \frac{\sqrt{27}}{6}$

5. Solve for x and check your solutions:

(a)
$$\sqrt{2x-5} = 5$$
 (b) $\sqrt{4x+2} = \sqrt{3x+4}$ (c) $4\sqrt{x}+5 = x$ (d) $\sqrt{x+1} - \sqrt{2x} = 1$

(a) Solve by factoring: $x^2 - 7x + 12 = 0$

(b) Solve with the quadratic formula: $4x^2 + 2x + 1 = 0$

- (c) Solve by completing the square: $2x^2 8x 3 = 0$
- (d) Solve by any method: $x^2 + 10x + 26 = 0$

7. Simplify (express your results in the form a + bi for a, b real):

(a) (4-8i) - (8-3i) (b) $(\sqrt{-4}) (\sqrt{-16})$ (c) 7i (-9+3i)(d) (10+2i)(-2-i) (e) $\frac{-1-3i}{4-5i}$ (f) $2(\cos 120^\circ + i \sin 120^\circ)$

8. Given $f(x) = 3x^2 - 2$, determine:

(a)
$$f(2)$$
 (b) $f(-3)$ (c) $f(1/2)$ (d) $f(a)$

9. Sketch the graphs of each of the given functions, indicating the x and y intercepts, the vertex, the axis of symmetry and stating the maximum or minimum value of the function:

(a)
$$f(x) = x^2 - 3$$

(b) $g(x) = -2x^2 + 2$
(c) $h(x) = -(x+2)^2$
(d) $k(x) = -(x+2)^2 + 2$
(e) $w(x) = x^2 + x + 1$

10. Given $f(x) = \frac{x^2 - 9}{x^2 + 2x - 15}$

(a) Determine the values of x for which the function is defined

- (b) Evaluate: f(0)
- (c) Evaluate: f(-3)

11. Graph:

(a)
$$2x + 3y \le 6$$
 (b) $x - 2y < 4$

12. Given the functions f(x) = 2x + 1 and $g(x) = \frac{1}{2}x - \frac{1}{2}$ sketch both graphs on the same set of axes.

13. Sketch each pair of functions on the same set of axes:

(a)
$$f(x) = 3^x$$
 and $g(x) = 3^{-x}$ (b) $f(x) = 3^x$ and $g(x) = \log_3 x$

14. Solve for x (use the definitions and properties of exponents and logarithms):

(a)	$3^{x-1} = 81$	(b)	$7^{-x} = 49$	(c)	$25^x = 125$
(d)	$\log_4 1 = x$	(e)	$\log_6(6^{-8}) = x$	(f)	$\log_2 x = -4$

Page 2

15. Solve and write the answer in set notation:

(a)
$$|2x-1| = 3$$
 (b) $|x|-1 = 4$ (c) $|2x-1| \le 3$ (d) $|x| > 5$ (e) $|2-3x| \ge 1$

16. Find the center and radius for each circle:

(

a)
$$x^2 + y^2 - 4y = 12$$
 (b) $x^2 + y^2 = 9$ (c) $x^2 - 6x + y^2 - 4y = 8$

17.

- (a) Find θ , to the nearest whole degree, if $\sin \theta = 0.1234$ and $\cos \theta < 0$
- (b) Find $\sin \theta$ if $\cos \theta = -3/5$ and θ is in Quadrant III.

18. Without using a calculator, determine the exact value of:

(a)
$$\sin^2(30^\circ) + \cos^2(30^\circ)$$
 (b) $\tan(60^\circ)$ (c) $\sec^2(45^\circ) - \tan^2(45^\circ)$ (d) $\sin(\pi/6) - \cos(\pi/4)$

19. If each of the following points P are on the terminal side of angle θ in standard position with $0 \le \theta < 360^{\circ}$, draw θ and determine the value of the six trigonometric functions of θ :

(a)
$$P = (3, -2)$$
 (b) $P = (-3, 4)$ (c) $P = (2, 4)$

20. For each of the following angles θ , draw them in standard position, choose a specific point on the terminal side of θ and determine the exact values of $\sin \theta$, $\cos \theta$ and $\tan \theta$ without using a calculator:

(a)
$$\theta = \frac{5}{6}\pi$$
 (b) $\theta = 315^{\circ}$ (c) $\theta = 270^{\circ}$

21. Evaluate $\sin \theta$, $\cos \theta$ and $\tan \theta$ exactly for each of the following angles:

(a)
$$\theta = 210^{\circ}$$
 (b) $\theta = -240^{\circ}$ (c) $\theta = 675^{\circ}$

22. Solve the following (clearly specify the unknown, draw a labeled diagram if appropriate and state the solution in words):

- (a) The time a person takes to paddle a kayak 2 miles downstream is the same as the time to paddle half a mile upstream. If the rate of the current is 3 mph, what is the person's paddling rate in still water?
- (b) Bill is standing on top of a 175 foot cliff overlooking a lake. The measure of the angle of depression to a boat is 29°. How far is the boat from the bottom of the cliff (rounded to one decimal place)?
- (c) Suppose that the height in meters of a golf ball, hit from a tee, is approximated by $y = -5t^2 + 10t + 15$ where t is the time in seconds. Find the maximum height of the ball and the time it reaches this maximum height.
- **23.** Graph each equation for $-2\pi \le x \le 2\pi$:

(a) $y = 2\sin x$ (b) $y = 3\cos x$ (c) $y = -\cos x$

24. A central angle of $\theta = 30^{\circ}$ is contained in a circle with radius r = 30 inches. Find (leaving all results in terms of π):

- (a) the length of the arc subtended by θ
- (b) the area of the sector determined by θ

Page 3

25. Find the exact values of the area and perimeter of this right triangle:

- 26. Verify the following trigonometric identities:
- (a) $\csc \theta \tan \theta \cos \theta = 1$
- (b) $\csc \theta \sin \theta = \cot \theta \cos \theta$
- (c) $\tan^2 \theta + 1 = \sec^2 \theta$

(d)
$$\cos^2 \theta - \sin^2 \theta = \frac{1 - \tan^2 \theta}{1 + \tan^2 \theta}$$

27.

1.

- (a) A hot-air balloon rises vertically. An observer stands on level ground at a distance of 125 feet from a point on the ground directly below the passenger's compartment. How far, to the nearest foot, does the balloon rise if the angle of elevation changes from 20° to 30°?
- (b) A state trooper is hiding 30 feet from a straight highway with a speed limit of 65 mph. One second after a truck passes, the angle θ between the highway and the line of observation from the patrol car to the truck is measured.
 - (i) If $\theta = 15^{\circ}$ does the truck driver get a speeding ticket (1 mile = 5,280 ft)?
 - (ii) If $\theta = 30^{\circ}$ does the truck driver get a speeding ticket?

Answers

(a)
$$\frac{n-5}{n-1}$$
 (b) $\frac{3xy+5x}{3(3y+5x)}$ (c) $\frac{x}{x+1}$ (d) $\frac{x}{x+3y}$ (e) $\frac{9ab+18b}{3a+b}$
(f) $\frac{2}{x-5}$ (g) $\frac{n+15}{(n-9)(n+4)(n-1)}$ (h) $\frac{4}{x-3}$ (i) $\frac{-x+6}{12x^2(x-2)^2}$
2.
(a) $x = 22$ (b) $y = -17$ (c) $n = 2/7, 7/2$ (d) $x = -2$
3.
(a) $\frac{1}{8}$ (b) $\frac{y^4}{16x^{10}}$ (c) $\frac{8\sqrt{15}}{5}$ (d) $\frac{\sqrt{6}}{4}$ (e) $\frac{3}{4}$ (f) $3xyz^2\sqrt[3]{3yz}$ (g) $\frac{-2y^4}{x^2}$
4.
(a) $-4\sqrt{5}$ (b) $-13\sqrt[3]{3}$ (c) $-8\sqrt{10}+24\sqrt{3}$
(d) $8\sqrt{3}-36\sqrt{2}+6\sqrt{10}-18\sqrt{15}$ (e) $-\frac{3\sqrt{14}+5\sqrt{7}}{7}$ (f) $\sqrt{3}$

(a) $(-\infty, -5) \cup (-5, 3) \cup (3, \infty)$ or all real numbers except -5 and 3 (b) f(0) = 3/5 (c) f(-3) = 0

(a) x = 5 (b) x = -2 (c) x = 3/2 (d) x = 0 (e) x = -8 (f) x = 1/16

(a) $\{-1,2\}$ (b) $\{-5,5\}$ (c) $\{x \mid -1 \le x \le 2\}$ (d) $\{x \mid x < -5 \text{ or } x > 5\}$ (e) $\{x \mid x \le 1/3 \text{ or } x \ge 1\}$ 16.

- (a) center (0,2) radius 4 (b) center (0,0) radius 3 (c) center (3,2) radius $\sqrt{21}$
- 17.

(a) $\theta = 173^{\circ}$ (b) $\sin \theta = -4/5$

18.

(a) 1 (b) $\sqrt{3}$ (c) 1 (d) $1/2 - \sqrt{2}/2 = (1 - \sqrt{2})/2$

19.

(a)
$$\sin 210^\circ = -\sin 30^\circ = -1/2$$
, $\cos 210^\circ = -\cos 30^\circ = -\sqrt{3}/2$, $\tan 210^\circ = \tan 30^\circ = \sqrt{3}/3$

(b)
$$\sin(-240^\circ) = \sin 60^\circ = \sqrt{3}/2$$
, $\cos(-240^\circ) = -\cos 60^\circ = -1/2$, $\tan(-240^\circ) = -\tan 60^\circ = -\sqrt{3}$

(c)
$$\sin 675^{\circ} = -\sin 45^{\circ} = -\sqrt{2}/2$$
, $\cos 675^{\circ} = \cos 45^{\circ} = \sqrt{2}/2$, $\tan 675^{\circ} = -\tan 45^{\circ} = -1$

22.

(a) The person's paddling rate in still water is 5 mph.

(b) The boat is 315.7 feet from the bottom of the cliff.

(c) The maximum height of the ball is 20 meters which it reaches in 1 second.

23.

(a) arc length = 5π inches (b) area = 75π square inches

25.

Area = $2 \tan 30^{\circ}$ in² = $\frac{2\sqrt{3}}{3}$ in²; perimeter = $2\sqrt{3} + 2$ in

26.

To prove these identities, use algebra and the basic identities

$$\tan \theta = \frac{\sin \theta}{\cos \theta}$$
$$\cos^2 \theta + \sin^2 \theta = 1$$
$$\csc \theta = \frac{1}{\sin \theta}$$
$$\sec \theta = \frac{1}{\cos \theta}$$
$$\cot \theta = \frac{1}{\tan \theta}$$

27.

- (a) The balloon rises 27 feet.
- (b) (i) The truck is traveling at 111.96 ft/sec which is 76.34 mph and the driver gets a ticket. (ii) The truck is traveling at 51.96 ft/sec which is 35.43 mph and the driver does not get a speeding ticket.

Spring 2003 MB, Spring 2004, Fall 2006 PR. Revised 11/2010, C.O'S.

Page 9