
Chapter 7

Factoring

Vocabulary

• A factor (of an integer)

• A factor (of a polynomial)

• To factor

• Greatest common divisor

• To factor completely

• Difference of squares

• Quadratic trinomial

• Monic polynomial

7.1 Introduction to factoring

There are a number of circumstances when it is convenient to see a polynomial
not as a sum of terms but as a product of factors. The process of writing a
polynomial as a product of factors is called “factoring.” The main use we will
see for factoring will be in Chapter 9, in order to solve some quadratic equations.
However, factoring is also a basic technique for working with rational expressions
(in intermediate algebra) and in solving higher-degree polynomial equations (in
precalculus).

In this chapter, we will outline some basic techniques for factoring. By the
end, we will have developed a kind of “checklist” that we can apply to try to
factor any polynomial expression.

The word “factor,” in the context of mathematics, always implies the oper-
ation of multiplication. Just like we use the word “term” to mean a quantity
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170 CHAPTER 7. FACTORING

being added, the word “factor” will be used to represent a quantity being mul-
tiplied.

Example 7.1.1. • In the expression 4 · 7, there are two factors, 4 and 7.

• In the expression (3.79)(−1.2)(5.9), there are three factors, 3.79, −1.2 and
5.9.

• In the expression 3x, there are two factors, 3 and x.

One thing to keep in mind is that factors might be more complicated that
those in the previous example.

Example 7.1.2. • In the expression 4x(x2+3x+1), there are three factors:
4, x and x2+3x+1. Notice that the entire expression in parentheses (which
is one “group” having three terms) is one factor.

• In the expression (x + 1)(x + 4), there are two factors, x + 1 and x + 4.
Notice that each of the two factors has two terms.

Unfortunately, the word “factor” is used in other ways as well. While the
basic meaning of a factor as “an expression appearing in a product” is not lost,
in other uses of the word this basic meaning is hidden in the background.

For example, the integer 12, considered as an arithmetic expression, does not
appear as a factor at all, in the sense that there is no multiplication indicated.
However, we can write 12 = 3 · 4. So we can say that 3 and 4 are factors of 12.
Likewise, −2 is also a factor of 12, since 12 can also be written as (−2)(−6).
Notice that, from this point of view, factors of an integer come in pairs: −2 is
a factor of 12, and so is −6.

In summary, a factor of an integer is an integer which can be multiplied by
another integer to give the original number. (Sometimes it is said that a factor
of an integer “divides the original number evenly,” but we want to emphasize
that the word factor implies the operation of multiplication.) While the word
“factor” in this sense is sometimes meant to only refer to positive numbers, we
will need to consider both positive and negative factors.

Here are a few things to remember about factors of integers:

• 1 is a factor of every integer. (And so is −1.)

• Every integer is a factor of itself. (And so is its opposite a factor of itself.)

• A prime number is a positive integer with exactly two positive factors: 1
and itself.1

Example 7.1.3. List all the factors of each of the following integers:

(a) 12;

(b) −140;

1For this reason, the number 1 is not a prime number, since it has only one positive factor.
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(c) 25;

(d) 17.

Answer. (a) The factors of 12 are 1, 2, 3, 4, 6, 12, −1, −2, −3, −4, −6 and
−12.

(b) The factors of −140 are 1, 2, 4, 5, 7, 10, 14, 20, 28, 35, 70, 140, −1, −2,
−4, −5, −7, −10, −14, −20, −28, −35, −70 and −140.

(c) The factors of 25 are 1, 5, 25, −1, −5, and −25.

(d) The factors of 17 are 1, 17, −1 and −17. (Notice 17 is a prime number.)

In a similar way, a factor of a polynomial is another polynomial
which, when multiplied by a third polynomial, gives the original poly-
nomial. In the case that that the polynomial is already written as a product,
some factors are easy to see. For example, the polynomial (3x + 2)(x − 1) has
two factors, being 3x + 2 and x − 1. Whether it has any other factors will be
investigated in the remainder of the chapter.

What happens if a polynomial is not written as a product?
So far, we have used the word “factor” as a noun. However, due to the

importance in various contexts of seeing an expression written as a product, the
word “factor” is also used as a verb.

Factoring

To factor means to write as a product of two (or more) factors.

For example, to factor the number 12, we could write 3·4 or 2·6 or (−1)(−12).
From this example, you can see that there is usually more than one way to factor
an integer.2

Likewise, when we are asked to factor a polynomial, the answer should be
a product of two (or more) polynomials. For example, to factor x2 + 3x + 2,
we would write (x + 1)(x + 2). You can check that the answer is correct by
multiplying the two polynomials x+ 1 and x+ 2—you should get x2 + 3x+ 2.
By the end of this chapter, you will see how to obtain that answer, if it weren’t
given to you like it was here. But you should notice something right away:
Factoring is the opposite process as multiplying. This will be our guide
to presenting all the various methods of factoring below.

2(The Fundamental Theorem of Arithmetic states, however, that there is only one way to
factor a positive integer into factors which are powers of prime numbers, up to the order in
which the factors are written. This is called the prime factorization of the integer. You might
remember algorithms for producing the prime factorization of a number, like the so-called
“factor tree.”)
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NOTICE: For the remainder of this chapter, all of our polynomials will have
integer coefficients. In particular, when we are asked to factor a polynomial
with integer coefficients, we will insist that the factors should also have integer
coefficients.

7.2 “Factoring out” the greatest common factor

Let’s start out with an example where we can “cheat.”

Example 7.2.1. Factor: 6x3 + 21x2.

Answer. One answer is 3x2(2x+ 7).

To see why, refer to Example 6.30 in the last chapter. We can “cheat”
because we already multiplied two polynomials to obtain 6x3+21x2, so when we
are now asked to factor the same polynomial—to write it as a product—we can
just refer back to the original multiplication problem.

The problem, of course, is that on many occasions we will not be able to
refer back to a multiplication problem to find an answer. But let’s look a little
more carefully at the preceding example to try to find a strategy.

Our “answer” 3x2(2x + 7) has two factors: 3x2 and 2x + 7. How are the
related to the original polynomial 6x3 + 21x2?

Notice that the original polynomial had two terms: 6x3 and 21x2. The
coefficients of these two terms, 6 and 21, have two positive common factors:
1 and 3. (When we look for common factors, we will keep in mind that 1 is
always a common factor.) Of these, the greatest common factor is 3—which is
the coefficient of the factor 3x2.

In addition to the common factor of 3, the terms 6x3 and 21x2 have a variable
part in common—they both involve powers of x. How many factors of x are
common? Both terms include a factor of x, since x3 = x · x2 and x2 = x · x.
Both terms also include a factor of x2, since x3 = x2 · x and x2 = x2 · 1. But
only one of the terms includes a factor of x3, since the second term includes only
two factors of x. Summarizing, the greatest common factor of x3 and x2—the
greatest number of factors of x that are in common to both—is x2. Notice that
x2 is the variable part of our original factor 3x2.

To summarize the preceding two paragraphs: the factor 3x2 is the greatest
common factor (often abbreviated as GCF) of the two original terms 6x3 and
21x2. We obtained it by separately considering the coefficients and the variable
parts of the terms and multiplying the result.

What about the other factor 2x + 7 from our answer? How is this factor
related to the original polynomial?

Notice what happens when we divide our original polynomial 6x3 +21x2 by



7.2. “FACTORING OUT” THE GREATEST COMMON FACTOR 173

the common factor 3x2 that we just discussed:

6x3 + 21x2

3x2

6x3

3x2
+

21x2

3x2

2x+ 7.

In other words, the second factor 2x+7 is the quotient of the original polynomial
by the greatest common factor.

Let’s summarize the method that we have taken out of the preceding dis-
cussion. The process of factoring by finding a greatest common factor is often
referred to as “factoring out” the greatest common factor.

Factoring out the greatest common factor

To factor a polynomial whose terms have a common factor:

1. Find the greatest common factor of all the terms of the original poly-
nomial, considering both the coefficients and the variable parts.

2. Divide the original polynomial by the GCF from Step 1 to obtain the
second factor.

The answer is the product of the polynomials from Steps 1 and 2.

NOTICE: It is possible to factor polynomials using a common factor that
is not the GCF. For example, we could have factored 6x3 + 21x2 above as
x2(6x + 21) or as 3x(2x2 + 7x). (Check that these are all valid!) We have
written the polynomial as a product of two factors, as required. However, these
factorizations are not “complete,” in the sense that one of the factors still has
factors in common among its terms. From now one, we will always ask to factor
completely, which in this context means to factor out not just any common fac-
tor, but the greatest common factor. We will have more to say about “factoring
completely” below.

The following examples illustrate the procedure for factoring out the GCF,
as well as a number of issues to watch out for.

Example 7.2.2. Factor completely: 12x7 − 8x5 + 16x3.

Answer. The polynomial has three terms, 12x7, −8x5 and 16x3. The coeffi-
cients have (positive) common factors 1, 2 and 4. The highest power of x that
is common to all three terms is x3. So the greatest common factor is 4x3.
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Dividing the original polynomial by the GCF of 4x3:

12x7 − 8x5 + 16x3

4x3

12x7

4x3
+

−8x5

4x3
+

16x3

4x3

3x4 − 2x2 + 4.

The answer is 4x3(3x4 − 2x2 + 4).

Notice that the greatest common factor includes the least exponent appear-
ing in any of the terms. Although this “rule” seems strange, keep in mind we
are looking to what factors are in common to all terms.

The next example shows illustrates a basic feature of polynomials: Not every
polynomial can be factored, at least in any way that will be considered in this
text. (One should keep in mind the example of prime numbers from arithmetic.)

Example 7.2.3. Factor completely: x2 + 5.

Answer. The polynomial has two terms, x2 and 5. The only positive common
factor of the coefficients is 1. There is no common factor of x. So the GCF of
these two terms is 1.

Although we could conceivably divide the original polynomial by 1, this will
result in the same polynomial, and so as a factorization we would have to write
(1)(x2+5). However, we have gained nothing in the sense that the new “factor”
is the same as the original polynomial.

The answer is: The polynomial cannot be factored.

In particular, from now on, we will be more precise about what we mean
by the verb “to factor.” To factor will mean: Write as a product of two or
more factors, none of which are 1. (There will be one exception to this when
we discuss factoring by grouping in Sections 7.5 and 7.6 below.)

CAUTION: We will see many examples in later sections of polynomials
whose terms have no common factor, but that can be factored using other
techniques. (For the record, the polynomial x2+5 in the example above cannot
be factored using any of the methods we will discuss.)

Example 7.2.4. Factor completely: 10x− 25.

Answer. The polynomial has two terms, 10x and −25. The coefficients have
positive common factors 1 or 5. They do not have a common variable factor,
since the second term does not involve x. So the greatest common factor is 5.

Dividing the original polynomial by the GCF of 5, we obtain

10x− 25

5
10x

5
+

−25

5
2x− 5.
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The answer is 5(2x− 5).

Example 7.2.5. Factor completely: x3 − 4x2 − 2x.

Answer. The polynomial has three terms, x3, −4x2 and −2x. The coefficients
have only positive common factor 1. The highest power of x that is common to
all three terms is x. So the greatest common factor is x.

Dividing the original polynomial by the GCF of x:

x3 − 4x2 − 2x

x
x3

x
+

−4x2

x
+

−2x

x
x2 − 4x− 2.

The answer is x(x2 − 4x− 2).

When the leading coefficient of a polynomial is negative, it is customary to
“factor out” a negative number, so that the more complicated factor has positive
leading coefficient. The next two examples in this section illustrate that point.

Example 7.2.6. Factor completely: −4x2 + 8x− 6.

Answer. The polynomial has three terms, −4x2, 8x and −6. The positive
common factors of the coefficients are 1 and 2. There is no common factor
involving x. Since the leading coefficient is negative, we will use −2 as the
GCF.

Dividing the original polynomial by the GCF of −2:

−4x2 + 8x− 6

−2
−4x2

−2
+

8x

−2
+

−6

−2

2x2 − 4x+ 3.

The answer is −2(2x2 − 4x + 3). Notice that the second, more complicated
factor (the trinomial) has a positive leading coefficient of 2.

Example 7.2.7. Factor completely: −x2 − 2x+ 4.

Answer. The polynomial again has three terms, −x2, −2x and 4. The only
positive common factor of the coefficients is 1. There is no common factor
involving x. Even though normally we might say that this polynomial cannot be
factored, we will go to the trouble of “factoring out” the common factor of −1
because the leading coefficient is negative.
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Dividing the original polynomial by the GCF of −1:

−x2 − 2x+ 4

−1
−x2

−1
+

−2x

−1
+

4

−1

x2 + 2x− 4.

The factorization, according to what we have written so far, is
(−1)(x2+2x−4). However, it is typical in this case to suppress the multiplication
by −1, which has the effect of “the opposite of.” So we will simply write −(x2+
2x− 4).

The answer is −(x2 + 2x− 4).

We conclude with an example illustrating the fact that the principles of
“factoring out” a variable common factor extend to polynomials with more
than one variable.

Example 7.2.8. Factor completely: 4x2y3z5 − 12x5y8z3 + 16x3y4.

Answer. The polynomial has three terms, 4x2y3z5, −12x5y8z3 and 16x3y4.
The coefficients have greatest common factor 4. The highest power of x that is
common to all three terms is x2. The highest power of y that is common to all
three terms is y3. Since the third term has no factor of z, z will not appear in the
greatest common factor. Combining all this information, the greatest common
factor of the three terms is 4x2y3.

Dividing the original polynomial by the GCF of 4x2y3:

4x2y3z5 − 12x5y8z3 + 16x3y4

4x2y3

4x2y3z5

4x2y3
+

−12x5y8z3

4x2y3
+

16x3y4

4x2y3

z5 − 3x3y5z3 + 4xy.

The answer is 4x2y3(z5 − 3x3y5z3 + 4xy).

7.2.1 Exercises

Factor the following polynomials completely.

1. 6x3 − 2x

2. 4x5 − 12x3 − 8x2

3. 18x− 9

4. −3x4 + 15x3 − 9x2
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5. 6ab3 − 12a2b2

6. −xy4 − 2x2y3 − 15x5y

7.3 Differences of squares

Let’s look at the polynomial
x2 − 16.

Based on the previous section, we might be tempted to say that this polynomial
cannot be factored. After all, the only positive factor x2 and −16 have in
common is 1.

But not so fast! Looking back at Example 6.34, we’ve seen this polynomial
before—it was the result of the product (x + 4)(x − 4). So once again, we can
“cheat:” x2 − 16 can be factored as (x+ 4)(x− 4)!

We never would have noticed that x2 − 16 could have been factored just by
looking for common factors. The question is now: What made this polynomial
so special, and is there a pattern that we can use?

The first thing to notice about this polynomial is that it has only two terms—
it is a binomial. More important, though, each of the two terms (ignoring for
a moment the signs) are perfect squares : x2 is (x)2 (“x squared”) and 16 is
(4)2 (“four squared.”) Finally, the two perfect squares are subtracted. For
that reason, this example and those having these common features are called
“differences of squares.”

Notice, by the way, that the two quantities which are being squared—in this
example, the x and the 4, play a key role in the factorization: (x + 4)(x − 4).
This pattern is at the heart of factoring a difference of squares.

Factoring a difference of squares

The factorization of a polynomial having the special form a2 − b2 is

(a+ b)(a− b).

(Notice that since the answer is a product, the order that we write the
factors is not important, thanks to the commutative property of multipli-
cation.)

Exercise 7.3.1. Show by multiplying (a + b)(a − b) that this product is really
the same as a2 − b2. You can look back at Example 6.34 if you need a hint.

What this “formula” says is that once you see that you have a difference of
squares, you are almost done. Just figure out what quantities are being squared
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(playing the roles of a and b in the formula), and fill them into the pattern

( + )( − ).

The only thing that requires some care is recognizing a difference of squares.
(If you aren’t familiar with the perfect square numbers, write a list of the first
10 or 12: 12 = 1, 22 = 4, 32 = 9, and so on.)

Example 7.3.2. Factor completely: x2 − 81.

Answer. Notice first that the two terms x2 and −81 have no factors in common
(except 1).

However, x2 is a perfect square (x squared) and 81 is also a perfect square (9
squared). The perfect squares are being subtracted. It is a difference of squares!

The answer is (applying the pattern) (x+ 9)(x− 9).

Example 7.3.3. Factor completely: 9x2 − 25.

Answer. Again, the terms have no common factor (other than 1).
The term 9x2 is a perfect square: 9x2 = (3x)2, using Property (E4) of

exponents. Also, 25 (= (5)2) is a perfect square. Since the perfect squares are
subtracted, this is a difference of squares.

The answer is (3x+ 5)(3x− 5).

Example 7.3.4. Factor completely: x2 + 4.

Answer. The two terms have no common factor (other than 1).
Both terms x2 and 4 are again perfect squares: x2 = (x)2 and 4 = (2)2.

However, the terms are not subtracted! This example is not a difference of
squares, and so the “formula” approach we have been using cannot be applied.
In fact, there is no simple factorization for x2+4, at least with polynomials with
integer coefficients.

The answer is: x2 + 4 cannot be factored.

The previous example is an example of a general fact: a sum of squares
a2 + b2 cannot be factored using polynomials with integer coefficients. (The
reader refer to Exercise 11 to see that (a+ b)(a+ b) is not in general the same
as a2 + b2.)

The next example shows that sometimes, differences of squares may appear
“in disguise.”

Example 7.3.5. Factor completely: x6 − 25y4.

Answer. The two terms have no common factor other than 1.
On the surface, the exponents for the variables are not 2, so this may not

appear to be a difference of squares. However, because both exponents are even,
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we can use Property (E4) and (E5) of exponents (Section 6.3) to express them
as perfect squares. In particular, x6 = (x3)2 and 25y4 = (5y2)2. Since the terms
are subtracted, this is a difference of squares!

The answer is (x3 + 5y2)(x3 − 5y2).

In the previous examples, we have never had to worry about common factors.
In fact, the reader might wonder why bother making note in all those examples
that there were no common factors other than one. The next example shows
that a difference of squares might not be apparent until common factors are
“factored out.”

Example 7.3.6. Factor completely: 3x3 − 27x.

Answer. In this example, the two terms 3x3 and −27x have a common factor
of 3x. Our first step will be to factor out the common factor, as in the previous
section:

3x(x2 − 9).

We have obtained a factorization of 3x3 − 27x, in the sense that we have
written it as a product of two factors. However, the factor x2− 9 is a difference
of squares, and so can itself be factored. In other words, we have not factored
completely. The factor x2 − 9 factors as (x+ 3)(x− 3).

The answer is 3x(x + 3)(x − 3). Notice that the common factor that we
factored out first must appear in the final factorization.

We close this section with another reminder about factoring completely.

Example 7.3.7. Factor completely: 16x4 − 1.

Answer. The two terms have no common factor (other than 1).
Both terms 16x4 and 1 are perfect squares: 16x4 = (4x2)2 and 1 = (1)2.

Since they are being subtracted, we have a difference of squares, and we write

(4x2 + 1)(4x2 − 1).

We need to make sure that we have factored completely. Looking carefully
at the two remaining factors, we see that the first factor 4x2 + 1 is a sum of
squares, and as mentioned above, cannot be factored. However, the second factor
4x2 − 1 is again a difference of squares: 4x2 = (2x)2 and 1 = (1)2. In other
words, 4x2 − 1 can be factored as (2x+ 1)(2x− 1).

The answer is (4x2 + 1)(2x+ 1)(2x− 1).

7.3.1 Exercises

1. a2 − 9

2. x2 − 25
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3. x2 + 64

4. 4x2 − 36

5. 25x4 − 81y6

6. x4 − 4x2

7. 3x3 − 75x

8. (*) (Other special products) Use the formula a2+2ab+ b2 = (a+ b)2 from
Exercise 11 to factor the following polynomials:

(a) x2 + 2xy + y2

(b) x2 + 10x+ 25

(c) x2 + 12x+ 36

9. (*) (Other special products) Show that a2 − 2ab+ b2 = (a− b)2 by multi-
plying the right side. In words, this is a “formula” which says that if we
have a sum of squares with an additional term that is the opposite of twice
the product of the two quantities being squared, it can be factored as the
square of the difference of the two quantities. (You will notice that this is
actually just a version of the formula in the previous exercises, replacing
−b for b.)

10. (*) Use the formula in the previous exercise to factor the following poly-
nomials:

(a) x2 − 2x+ 1

(b) x2 − 18x+ 81

(c) x2 − 8x+ 16

11. (*) (Difference of cubes) Show that a3 − b3 = (a − b)(a2 + ab + b2) by
multiplying the right side. This is a “formula” which says that if we
have a difference of perfect cubes (quantities raised to the third power),
the expression can be factored as the product of the difference of the two
quantities and the sum of the squares of the two quantities and the product
of the two quantities.

12. (*) Use the formula in the previous exercise to factor the following poly-
nomials completely:

(a) x3 − 8

(b) x3y − 125y4

13. (*) (Sum of cubes) Show that a3+b3 = (a+b)(a2−ab+b2) by multiplying
the right side. Unlike the case of squares, sums of perfect cubes can be
factored! The “formula” says that if we have a sum of perfect cubes, the
expression can be factored as the product of the sum of the two quantities
and the sum of the squares of the two quantities minus the product of the
two quantities.
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14. (*) Use the formula in the previous exercise to factor the following poly-
nomials:

(a) x3 + 64

(b) 8x3 + 27

7.4 Quadratic trinomials I. Monic trinomials

Many times, we will encounter polynomials having the form ax2+ bx+ c, where
a, b, and c represent numerical coefficients. When a (the coefficient of x2) is not
zero, this polynomial is quadratic, meaning that it is a polynomial of degree
2, or, what is the same, that the highest degree of any term is 2. We will call
polynomials of the form ax2 + bx+ c quadratic trinomials, given that there
are in general three terms whose highest degree is 2. (Notice though that if any
of the coefficients are zero, there may be less than three terms.)

We will follow the custom from now on of always using the letter a to rep-
resent the coefficient of the degree 2 term (the quadratic term), b for the the
coefficient of the degree 1 term (the linear term), and c for the degree 0 term
(the constant term).

In the next two sections, we will discuss methods to factor quadratic tri-
nomials. To make the presentation easier, we will first consider an easier case,
when a = 1. (Polynomials whose leading coefficient is 1 are called monic poly-
nomials.) Then, in the next section, we will take up the general case.

As we have in the past sections, let’s start with an example. We will try to
factor the quadratic trinomial

x2 + 6x+ 8.

(In the notation of the previous paragraphs, a = 1, b = 6 and c = 8.)
We first check that this polynomial cannot be factored using any of our two

prior methods. There is no factor (except 1) common to all three terms. Also,
it is clearly not a difference of squares—it has three terms, after all. So both of
our methods so far fail.

Let’s cheat! Looking back, in Example 6.31, x2 + 6x + 8 happened to have
been the result of the multiplication (x+4)(x+2). In other words, (x+4)(x+2)
is the factorization for x2 + 6x+ 8.

As usual, we can’t always hope that every polynomial we want to factor will
have been the result of some multiplication problem we had previously done.
However, as has been our pattern, let’s see if we can find some key features of
this example to help us find a general method for factoring (monic) quadratic
trinomials.

Let’s first set a goal of factoring a quadratic trinomial as a product of two
linear (degree 1) polynomials. In fact, if we are factoring a monic quadratic
trinomial, we will attempt to factor our quadratic trinomial x2 + bx + c into a
product of the form

(x+ )(x+ ),
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where the blanks will represent some numbers that we have to “fill in.” (In
our example, these numbers were 4 and 2.) Notice that this special form will
guarantee that the result will be a monic polynomial, since the only degree 2
term from distributing will be (x)(x) = x2.

How can we find numbers to “fill in the blanks” so that, when we multiply
them, we obtain the correct product? Let’s try to use our example above for
clues. Was there any relationship between the numbers 4 and 2 in the factor-
ization, on the one hand, and the coefficients 6 and 8 in the original trinomial?
Actually, there are two relationships that you could notice: first, 6 = 4 + 2,
and second, 8 = (4)(2). Our method for factoring monic quadratic trinomials is
based on these two important relationships: If a quadratic trinomial x2+ bx+ c
can be factored as (x+ p)(x+ q) for some numbers p and q, then p · q = c and
p+ q = b.

These relationships are the key to the following method.

Factoring a monic quadratic trinomial

If a monic quadratic polynomial x2 + bx+ c with integer coefficients b and
c can be factored, the factorization has the form

(x+ p)(x+ q),

where p and q are integers satisfying p · q = c and p+ q = b. To find p and
q:

1. List all integer factors of c, positive and negative, in pairs;

2. From this list, find a pair of factors whose sum is b.

If no such integers exist, then the quadratic trinomial cannot be factored.

This technique, like the technique involving difference of squares, amounts
to a kind of “fill in the blank”-type formula, where the p and q in this technique
are exactly the numbers to “fill in the blanks” in the formula

(x+ )(x+ ).

Although it may not be obvious from the description, the signs of p and q
are crucial to the method. The remaining examples of the section will illustrate
this point.

Example 7.4.1. Factor completely: x2 + 7x+ 12.

Answer. The terms have no factor in common (other than 1). It is not a
difference of squares. It is, however, a monic quadratic trinomial, with b = 7
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and c = 12. According to the strategy, we will look for factors of 12 that add to
7.

Below we list the factors of 12 in pairs, along with the sums.

1, 12 (1 + 12 = 13) − 1,−12 ((−1) + (−12) = −13)

2, 6 (2 + 6 = 8) − 2,−6 ((−2) + (−6) = −8)

3, 4 (3 + 4 = 7) − 3,−4 ((−3) + (−4) = −7)

The pair we are looking for is 3 and 4, since their product (3)(4) is 12 and
their sum 3+ 4 is 7. These will be the values we will use to “fill in the blanks.”

The answer is (x+ 3)(x+ 4). (Again, we remind the reader that the orders
of the factors is not important, thanks to the commutative property of multipli-
cation. We could have also written the answer as (x+ 4)(x+ 3).)

Now that we have illustrated our method with an example, we turn to an
example involving negative coefficients.

Example 7.4.2. Factor completely: x2 − 8x+ 7.

Answer. We check whether we can factor out a common factor or apply the
difference of squares formula; neither apply. The polynomial is a quadratic
trinomial. In this case b = −8 and c = 7. Notice, as always with polynomials,
we are considering the polynomial as x2 + (−8x) + 7, and the coefficient of the
x-term is negative.

Listing the factors of 7 (there are less this time, since 7 is prime!):

1, 7 (1 + 7 = 8) − 1,−7 ((−1) + (−7) = −8)

We see that the pair of factors whose product is 7 and whose sum is −8 is
−1 and −7. When we use these numbers to “fill in the blanks,” we obtain (x+
(−1))(x+ (−7)). Normally, however, we will rewrite the “adding the opposite”
as subtraction.

The answer is (x− 1)(x− 7).

Example 7.4.3. Factor completely: x2 − 2x− 8.

Answer. The terms of the polynomial have no common factor other than 1,
and it is not a difference of squares. It is a quadratic trinomial, with b = −2
and c = −8.

Listing the pairs of factors of −8:

1,−8 (1 + (−8) = −7) − 1, 8 ((−1) + 8 = 7)

2,−4 (2 + (−4) = −2) − 2, 4 ((−2) + 4 = 2)

(Notice that when c is negative, we should choose our pairs of factors with
opposite signs.)
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The pair of factors of −8 we are looking for is 2 and −4, since their sum is
−2.

The answer is (x+ 2)(x− 4). (This is NOT the same as (x− 2)(x+ 4), as
you can see by multiplying!)

Example 7.4.4. Factor completely: x2 + 2x+ 6.

Answer. The terms of the polynomial have no common factor other than 1,
and it is not a difference of squares. It is a quadratic trinomial, with b = 2 and
c = 6.

Listing the pairs of factors of 6:

1, 6 (1 + 6 = 7) − 1,−6 ((−1) + (−6) = −7)

2, 3 (2 + 3 = 5) − 2,−3 ((−2) + (−3) = −5)

In this example, none of the pairs add up to the value of b, which was 2.
The polynomial cannot be factored.

Example 7.4.5. Factor completely: 2x3 − 10x2 − 48x.

Example 7.4.6. In this example, the three terms do have a common factor:
the GCF is 2x. The first step then will be to factor out the GCF:

2x(x2 − 5x− 24).

However, we cannot yet say that the polynomial is factored completely, since
the second factor is a quadratic trinomial (with b = −5 and c = −24). The next
step will be to attempt to factor x2 − 5x− 24.

Listing the pairs of factors of −24:

1,−24 (1 + (−24) = −23) − 1, 24 ((−1) + 24 = 23)

2,−12 (2 + (−12) = −10) − 2, 12 ((−2) + 12 = 10)

3,−8 (3 + (−8) = −5) − 3, 8 ((−3) + 8 = 5)

4,−6 (4 + (−6) = −2) − 4, 6 ((−4) + 6 = 2)

We see that the pair we are looking for is 3 and −8, since their sum is −5 .
We can use these to “fill in the blank” and factor the quadratic trinomial, not
forgetting about the factor of 2x we already found.

The answer is 2x(x+ 3)(x− 8).

7.4.1 Exercises

Factor the following quadratic trinomials.

1. x2 − 4x− 32

2. y2 + 3y − 18
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3. x2 + 8y + 12

4. x2 − 12x+ 20

5. x2 + 3x+ 15

6. y2 − y − 6

7. t2 + 6t+ 9

8. x2 − 6x+ 5

Factor the following polynomials using any technique.

9. 3x3 − 9x2 − 12x

10. 5x2 − 80

11. 6x3 − 2x

12. 2x2 + 8

13. 4x4 − 12x3 − 8x2

14. 3x3 − 12x

15. (*) Apply the method of this section to factor the following polynomials
that have “quadratic form.” In each case, an appropriate substitution will
help. Don’t forget to factor completely!

(a) x4 + 5x2 + 6 (Hint: Substitute u = x2).

(b) x4 − x2 − 12

(c) x6 + 2x3 − 8 (Hint: Substitute u = x3).

(d) x64 − 10x32 + 9

7.5 Quadratic trinomials II. The ac-method

The previous section showed that, at least for monic quadratic trinomials, the
coefficients of the terms give important information as to how to factor the
trinomial into a product of linear factors.

Why was it so important in the previous section that the quadratic trinomial
be monic? Since the leading coefficient was 1, the coefficients of x in the linear
factors were also forced to be 1, and so there were only two numbers left to find
in the “formula” (x+ )(x+ ).

In the case of a non-monic quadratic trinomial ax2 + bx + c (a ̸= 1), we
have no guarantee about the coefficients of x in the linear factors. One way to
proceed would be to try to make a more elaborate “fill-in-the-blank” strategy,
now having the form

( x+ )( x+ ).
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In fact, this would be a reasonable approach. Of course, it would have to involve
a, b and c, not just b and c like in the monic case.

We will follow a different strategy, however. Instead of the brute-force guess-
ing and checking that the fill-in-the-blank approach would involve, we will follow
a strategy that is designed to genuinely reverse the distributive law involved in
multiplying two binomials. This method will be a little longer, but it involves no
guessing at all. It is called the ac-method for reasons that will be clear shortly.

We will illustrate this method with an example. Let’s try to factor the
quadratic trinomial

6x2 + 19x+ 10.

The terms have no factors in common, and it is clearly not a difference of
squares. And while the polynomial is a quadratic trinomial, it is not monic,
since a = 6. A quick check will reveal that the fill-in-the-blank procedure of the
previous section will lead nowhere in this case.

We will present the steps in the context of this example, then summarize
the steps at the end.

Example 7.5.1. Factor completely: 6x2 + 19x+ 10.

Answer. We follow a four-step approach.
Step 1. Form the product ac. In this case, a = 6 and c = 10, so the

product ac is (6)(10) = 60.
Step 2. Find a pair of factors of ac whose sum is b. We are looking

for factors of 60 (from Step 1) whose sum is b = 19. This is exactly the process
we used in the previous section; a little work will show that the pair of numbers
we are looking for is 4 and 15 (since (4)(15) = 60 and 4 + 15 = 19).

Step 3. Use the pair of factors from Step 2 to “split” the x-term.
We are going to rewrite the middle term using the two numbers we found in
Step 2:

6x2 + 4x+ 15x+ 10.

Notice we have not changed the polynomial in any way, since 15x + 4x is 19x.
We have only changed the way the polynomial is written.

Step 4. Factor by grouping. The heart of the ac-method is the following
procedure. First, we will group the four terms from Step 3 into two groups:

(6x2 + 4x) + (15x+ 10).

We are going to try to factor each group separately. For example, the first
group 6x2+4x has a common factor of 2x, which we can factor out: 2x(3x+2).
Likewise, the second group has a common factor of 5, which can be factored out
to obtain 5(3x+ 2). In other words, our polynomial now has the form

2x(3x+ 2) + 5(3x+ 2).

Written in this way, the polynomial has two terms, one from each group. Notice
that these two terms have a common factor of (3x+2)! Even though this common
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factor looks more complicated that our usual monomial common factors, we treat
it the same way: we factor it out. We will write the common factor 3x + 2
outside, and we will be left with a factor of 2x (from the first term) and 5 (from
the second term):

(3x+ 2)(2x+ 5).

The answer is (3x+ 2)(2x+ 5).

At this point, the reader should look back at Example 6.32, where we per-
formed the multiplication (2x + 5)(3x + 2) (the same as our final answer with
the order of factors reversed) to obtain 6x2 + 19x + 10. The steps involved in
that multiplication example were exactly the same as the steps of this method
of factorization, but in reverse! The ac-method is designed to mimic (in reverse)
the process of distributing in the case of multiplying a binomial by a binomial.

One thing should be pointed out right away. The order of the pair in splitting
the middle term in Step 3 does not matter. The reader can verify this fact in
the previous example, writing 6x2+15x+4x+10 instead of 6x2+4x+15x+10.
The result should be the same, with the order of factors reversed. (We will see,
however, that sometimes one way of splitting the middle term will give an easier
result than the other.)

For the reader’s reference, we repeat the four-step ac-method here.

Factoring a quadratic trinomial: The ac-method

If a quadratic polynomial ax2 + bx + c with integer coefficients a, b and c
can be factored as a product of linear factors having integer coefficients,
then the following procedure will give the factorization:

1. Form the product ac;

2. Find a pair of factors of ac whose sum is b;

3. Use the pair from Step 2 to “split” the x-term into a sum of two terms
having the pair of numbers as coefficients;

4. Factor the resulting polynomial by grouping.

If there is no pair of factors of ac whose sum is b, then the quadratic
trinomial cannot be factored into a product of linear factors with integer
coefficients.

For the rest of this section, we will write our quadratic polynomials in de-
scending order (as we usually do anyway). For this reason, we will sometimes
refer to the x-term as the “middle term.”
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We will now illustrate the ac-method with several examples. Along the way,
we will point out three “tips” to make using the ac-method easier.

Example 7.5.2. Factor completely: 3x2 − 8x+ 4.

Answer. First, notice that the three terms have no common factor other than
1, and that the polynomial is not a difference of squares. It is a quadratic
trinomial, and it is not monic, since a = 3. We will use the ac-method.

The product ac in this example is 12. So we need to find a pair of factor of
12 whose sum is −8. The pair is −6 and −2.

We use this pair to split the middle term:

3x2 − 6x− 2x+ 4.

There is a small but important difference in this example from the previous
one: the coefficient of the second x-term is negative (of course, so is the coef-
ficient of the first x-term, but that matters less). In this case, we are going to
factor out a negative number.

We group the polynomials:

(3x2 − 6x) + (−2x+ 4).

The first group has a common factor of 3x. Factoring out we obtain 3x(x−2).
The second group has a common factor of 2. However, as we mentioned, we
will factor out −2 instead to obtain −2(x − 2). (Be careful of the signs when
factoring out a negative number!) In other words, we obtain:

3x(x− 2)− 2(x− 2).

Because we made the effort to factor out a negative number from the second
group, we see the factor (x − 2) in common to the two groups, giving a factor-
ization of (x− 2)(3x− 2).

The answer is (x− 2)(3x− 2).

The previous example contains an important lesson:

Helpful hint # 1: When factoring a polynomial whose leading coefficient
is negative, it is usually a good idea to factor out a negative common factor.

The next example shows that this hint also leads to another tactic to make
factoring simpler.

Example 7.5.3. Factor completely: 2x2 − x− 10.

Answer. We check to see that the three terms have no common factor, and
that the polynomial is not a difference of squares. It is a quadratic trinomial
which is not monic (since a = 2), suggesting the ac-method.

We first form the product ac, with a = 2 and c = −10, so ac = −20.
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We now try to find a pair of factors of −20 whose sum is −1. Listing the
factors if necessary, we find that 4 and −5 are factors of −20 whose sum is −1,
as required.

As mentioned earlier, the order of this pair does not matter when splitting
the middle term. This time, though, the factors have different signs. As we saw
in the previous example, if we write the term with the negative coefficient second
(to obtain 2x2 + 4x − 5x − 10), we should aim to factor out a negative factor.
Since this requires special care about the sign of the other term, we will instead
write the term with the negative coefficient first:

2x2 − 5x+ 4x− 10.

Grouping the terms as (2x2 − 5x) + (4x − 10), we see that the first group
has a common factor of x, while the second group has a common factor of 2.
Factoring the two groups separately, we obtain

x(2x− 5) + 2(2x− 5).

As we expect in the ac-method, we see that the two resulting terms have a com-
mon factor of 2x− 5. Factoring it out, we obtain

(2x− 5)(x+ 2).

The answer is (2x− 5)(x+ 2).

Exercise 7.5.4. For practice, re-do the previous example, splitting the middle
term as

2x2 + 4x− 5x− 10.

The lesson of the previous example can be summarized in the following tip.

Helpful hint # 2: If the pair of factors used to split the middle term in
the ac-method have different signs, it is usually more convenient to write
the term with the negative coefficient first.

Example 7.5.5. Factor completely: 4x3 + 4x2 + 2x.

Answer. Notice first that this polynomial is not a quadratic trinomial. It is a
trinomial, of course, but it is not quadratic since the leading term has degree 3.

However, the three terms have a common factor of 2x. So we immediately
factor out the (greatest) common factor to obtain

2x(2x2 + 2x+ 1).

Although we now have a factorization, since we have written the polynomial
as a product of two factors, we need to decide whether the polynomial is factored
completely. In particular, since the second factor 2x2 + 2x + 1 is a quadratic
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trinomial which is not monic (since a = 2), we should try to apply the ac-method
to determine whether it can be factored further.

To apply the ac-method to factor 2x2 + 2x + 1, we see that the product ac
is 2, since a = 2 and c = 1. So we need to find factors of 2 whose sum is 2
(since b = 2). It shouldn’t take long to check that there is no pair of factors that
satisfy this property. In this case, the ac-method determines that the polynomial
2x2 + 2x+ 1 cannot be factored into a product of linear factors.

The answer is 2x(2x2 + 2x+ 1).

The final example of this section will lead to one last hint to keep in mind
when applying the ac-method.

Example 7.5.6. Factor completely: 12x2 − 33x− 9.

Answer. Looking at the three terms, there is a common factor of 3. The first
step will be to factor it out:

3(4x2 − 11x− 3).

As in the previous example, we need to determine whether the remaining
quadratic trinomial 4x2 − 11x− 3 can be factored further as a product of linear
factors. We will apply the ac-method, using a = 4, b = −11 and c = −3. (Notice
that to do this, the common factor of 3 no longer needs to be considered, although
it will remain in the final factorization.)

The product ac in this case is −12. We will look for a pair of factors of −12
whose sum is −11; such a pair is −12 and 1. Using this pair to split the middle
term (writing the factor with the negative coefficient first), we obtain

4x2 − 12x+ x− 3.

Grouping the factors as (4x2 − 12x) + (x − 3), we see that the first group
has a common factor of 4x. The second group, however, normally would not be
factored, since the only common factor of x and −3 is 1. However, to make the
factorization more clear, we are going to factor out the common factor of 1! In
other words, factoring the two groups separately we obtain

4x(x− 3) + 1(x− 3).

Written in this way, we see that the two terms have a common factor of
x − 3. Factoring out this common factor, we obtain (x − 3)(4x + 1). In other
words, the factor 4x2 − 11x− 3 can be factored as a product of linear factors.

The answer is 3(x− 3)(4x+ 1).

There are two things to notice about the previous example. First, taking
the time to factor out the common factor first, apart from being good general
practice, made the ac-method much smoother. After all, if we had applied the
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ac-method to the quadratic trinomial 12x2 − 33x− 9 without factoring out the
3 first, we would need to find factors of −108 whose sum is −33. That can be
done, but who wants to go through the list of 12 pairs of factors of −108? Even
if we did that, we would still see that one of the linear (binomial) factors would
have a common factor of 3 that we would still have to factor out in order to
factor completely. Always look for common factors first!

The second thing to notice is more particular to the ac-method.

Helpful hint # 3: When factoring by grouping using the ac-method, if
one of the groups has no common factor other than 1, take the time to
factor out the common factor of 1.

To close this section, we point out that even though we have developed the
ac-method as a method of factoring non-monic quadratic trinomials, the method
also works for the monic trinomials in the previous section. (We don’t normally
use the method for monic trinomials, though, since the “shortcut” presented in
the previous section is so much faster.) In the challenge exercises, we give some
other examples of situations where the ac-method can help.

7.5.1 Exercises

Factor the following polynomials completely.

1. 2x2 − x− 55

2. 3x2 + 4x+ 1

3. 6x2 + x− 2

4. 15x2 + x− 2

5. 5x2 − 3x− 1

6. 2x2 − x− 10

7. 6x2 − 22x+ 20

8. 2x4 − 4x3 − 16x2

9. (*) Factor completely the following polynomials that have “quadratic
form.” In each case, an appropriate substitution will help.

(a) 2x4 + 5x2 + 3 (Hint: Substitute x2 = u, so x4 = u2).

(b) 4x4 + x2 − 5

(c) 3x6 − 10x3 + 3 (Hint: Substitute u = x3).

(d) 2x6 + 5x3 − 7

(e) 4x1000 − 9x500 − 9
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10. (*) Use the ac-method to factor the following quadratic trinomials in two
variables.

(a) x2 − xy − 12y2

(b) x2 + 3xy + 2y2

(c) 2x2 − 5xy − 3y2

(d) 3x2 − 2xy − y2

7.6 Factoring by grouping

We will end our discussion of factoring by noticing that the technique of factoring
by grouping, which we used as a key component of the ac-method, can be applied
in a wider setting.

In each of the following examples, you will notice that none of the methods
we have discussed so far can be applied: they have no factors (other than 1)
common to all terms, they are not differences of squares, and they are not
quadratic trinomials. However, because they have four terms involving pairs
of variables, there is hope that they may be factored into a product of two
binomials.

Example 7.6.1. Factor completely: 3ax+ 2ay + 12bx+ 8by.

Answer. The reader should first check that none of the preceding factoring
techniques can be applied to this polynomial (in four variables!).

Let’s try to factor by grouping. Write the polynomial in two groups:

(3ax+ 2ay) + (12bx+ 8by).

We notice that the first group has a common factor of a, while the second group
has a common factor of 4b. So factoring the two groups separately, we obtain

a(3x+ 2y) + 4b(3x+ 2y).

Since the two terms now have a common factor of 3x+ 2y, we can factor it
out to obtain (3x+ 2y)(a+ 4b).

The answer is (3x+ 2y)(a+ 4b).

The reader should notice that the procedure in this example is exactly the
same as the one we encountered every time we apply the ac-method. There
is an important difference, though. In applying the ac-method, the two terms
obtained by factoring a common factor from the two groups separately will
always have a common factor (as long as the middle term is split by using the
factors of ac whose sum is b). For arbitrary polynomials like the ones we are
looking at now, the two terms might not have a common factor even if the two
groups can be factored separately.
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Example 7.6.2. Factor completely: 6np+ 4nq − 15mp− 10mq.

Answer. First check that none of the preceding factoring techniques can be
applied to this polynomial.

Again, we group the terms:

(6np+ 4nq) + (−15mp− 10mq).

We see that the first group 6np+4nq has a common factor of 2n. In the sec-
ond group −15mp− 10mq, notice that the first term is negative. As in Example
7.5.2 above, we will factor out a common factor with a negative coefficient—in
this case −5m. So we obtain

2n(3p+ 2q)− 5m(3p+ 2q).

(Notice again that factoring out the −5 in the second group changes the signs
of both terms in the group.)

Like last time, the two terms have a common factor of 3p + 2q. Factoring
out, we obtain

(3p+ 2q)(2n− 5m).

The answer is (3p+ 2q)(2n− 5m).

There is one thing worth mentioning about the preceding example. Instead
of grouping the first two terms and the last two terms, we could have rearranged
the terms first as 6np− 15mp+ 4nq − 10mq. The reader should check that the
result after factoring by grouping is the same as the result above (with the order
of the factors possibly different). The difference is that written in this different
order, there is no need to factor out a negative factor in the second group, which
might eliminate some difficulty with signs.

Reordering the terms in the last example might have been helpful, but it
was optional. The next example shows that sometimes reordering the terms is
essential to apply the method of factoring by grouping we have described.

Example 7.6.3. Factor completely: 3sx+ 2ty − 3tx− 2sy.

Answer. As usual, we check to see that none of the preceding factoring tech-
niques can be applied to this polynomial.

This time, if we try to group in the most obvious way, as (3sx + 2ty) +
(−3tx − 2sy), neither term has any common factor at all (except 1 of course).
However, before giving up, let’s try to rearrange the terms. For example, let’s
try rewriting the polynomial as

3sx− 3tx+ 2ty − 2sy.

Now, grouping as usual, we get

(3sx− 3tx) + (2ty − 2sy).
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Written this way, we see that the first group has a common factor of 3x
while the second group has a common factor of 2y. Factoring the two groups
separately, we get

3x(s− t) + 2y(s− t).

These two terms have a common factor of s − t. Factoring out this common
factor, we get

(s− t)(3x+ 2y).

The answer is (s− t)(3x+ 2y).

We end this section on a pessimistic note.

Example 7.6.4. Factor completely: 6ax+ 2ay + 5bx− 3by.

Answer. This polynomial has no factor common to all four terms. It is not a
difference of squares or a quadratic trinomial. Since there are four terms with
pairs of variables, we will try to factor by grouping.

Grouped in the obvious way

(6ax+ 2ay) + (5bx− 3by),

we see that the first group has a common factor of 2a while the second group
has a common factor of b. Factoring the groups separately, we get

2a(3x+ y) + b(5x− 3y).

However, the two resulting terms have no factor in common! This obstacle
is serious, since even though the groups have been factored, we still have not
written the whole original polynomial as a product of two factors, since there
are still two terms.

Before we give up, we remember from the last example that sometimes re-
ordering the terms can be helpful. So let’s try rewriting the original polynomial
as 6ax+ 5bx+ 2ay − 3by. Now, grouping as

(6ax+ 5bx) + (2ay − 3by),

we see that the first group has a common factor of x and the second group has
a common factor of y. Factoring the two groups separately, we obtain

x(6a+ 5b) + y(2a− 3b).

Again, these two terms have no common factor.
The reader should try other ways to reorder the terms to convince themself

that in no case can we obtain two terms with a common factor, as we have
above.

The polynomial cannot be factored.
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7.6.1 Exercises

Factor by grouping, if possible.

1. 6xz + 9xw − 8yz − 12yw

2. 45cw + 63cz − 20dw − 28dz

3. 20ax− 24ay + 15bx+ 18by

4. 4ac− 9bd− 3ad+ 12bc

5. 20ax− 15ay − 8bx+ 6by

6. 3mx+ 6my − 2nx− 4ny

7.7 Chapter summary

• To factor a polynomial means to write it as a product of two or more
factors, none of which are 1.

• Not every polynomial can be factored.

• In order to factor a polynomial, we have the following checklist to apply:

Factoring checklist

To factor a polynomial, answer the following questions in the given order:

1. Do the terms have any factors in common?

– If so, “factor out” the greatest common factor.

2. Is the polynomial a difference of squares?

– If so, apply the “formula” a2 − b2 = (a+ b)(a− b).

3. Is the polynomial a quadratic trinomial of the form ax2 + bx+ c?

– If so, and a = 1, find factors of c whose sum is b to “fill in the
blanks”

(x+ )(x+ ).

– If so, and a ̸= 1, apply the ac-method.

4. Can the method of factoring by grouping be applied?

If the above list gives a factorization of the polynomial, make sure to apply
the checklist to the each of the factors to make sure the polynomial is
factored completely.


