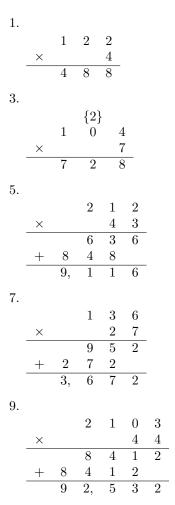

ARITHMETIC: A Textbook for Math 01 3rd edition (2012)

Answers to odd numbered exercises for Chapters 1, 2 by Natalia Novak

Section 1.1.3 Exercises



Section 1.2.5 Exercises

5.							
		$\{5\}$	$\{9\}$	$\{10\}$			
		6	0	0			
	_	1	9	9			
		4	0	1	-		
7.							
••		56	67	8			
	_		56	7			
		1, 1	l 1	1			
9.							
5.		(7)	(10)				
		${7} \\ 8$	$\{10\}$	1			
			0	1			
		7	9	0			
			1	1			
11.							
		{ 4}	$\{9\}$	$\{9\}$	<i>{</i> 9 <i>}</i>	{10}	
		5	0	0	0	0	0
	_	0	4	3	$\frac{1}{2}$	1	0
		4	5	$\frac{3}{6}$	$\frac{2}{7}$	$\frac{1}{9}$	$\frac{0}{0}$
		4	5	υ,	1	9	U

Section 1.3.3 Exercises

Section 1.4.2 Exercises

1. $8 \times 8 \times 8 \times 8 = 8^4$ 3. $2^5 = 2 \times 2 \times 2 \times 2 \times 2 = 32$ 5. $0^7 = 0 \times 0 \times 0 \times 0 \times 0 \times 0 \times 0 = 0$ 7. $10^2 = 10 \times 10 = 100$ 9. $0^3 = 0, 1^3 = 1, 2^3 = 8, 3^3 = 27, 5^3 = 125, \dots, 9^3 = 729, 10^3 = 1000, 100^3 = 1000000.$

Section 1.4.4 Exercises

- 1. $\sqrt{49} = 7$
- 3. $\sqrt{169} = 13$
- 5. $\sqrt{64} = 8$
- 7. $\sqrt{75}$ is between $\sqrt{64} = 8$ and $\sqrt{81} = 9$
- 9. $\sqrt{32}$ is between $\sqrt{25} = 5$ and $\sqrt{36} = 6$

Section 1.5.3 Exercises

1. $4 \times 22 = 88$ 3. $3 \times 17 = 51$ 5. $8 \times 12 = 96$ 7. $712 \div 101 = 7R5$ 9. $3333 \div 111 = 10R3$ 11. $457 \div 41 = 11R6$ 13. $317 \div 21 = 15R2$ 15 $21)\overline{317}$ $-\underline{21}$ 107-<u>105</u>215. $712 \div 21 = 33R19$ 33 $21)\overline{712}$ -6382-6319

Section 1.6.1 Exercises

1. $6 + 16 \div 4 = 6 + 4 = 10$

3. 15 - 9 - 4 = 6 - 4 = 25. $4 \times 3 \times 2 \div 8 - 3 = 12 \times 2 \div 8 - 3 = 24 \div 8 - 3 = 3 - 3 = 0$ 7. $\sqrt{21 - 30 \div 6} = \sqrt{21 - 5} = \sqrt{16} = 4$ 9. $2 + 2 \times 8 - (4 + 4 \times 3) = 2 + 2 \times 8 - (4 + 12) = 2 + 2 \times 8 - (16) = 2 + 16 - 16 = 18 - 16 = 2$

Section 1.7.1 Exercises

1.
$$\frac{1+2+3+4+5+6+7}{7} = \frac{28}{7} = 4$$

$$3. \ \frac{200+190+204}{3} = \frac{000}{3} = 202$$

5. Note that there were 9 seasons: 2002-2009 and 2010 years. $\frac{5+6+2+10+9+4+6+5+7}{9} = \frac{54}{9} = 6$

Answer: on average, 6 games were canceled for the 2002-2010 seasons.

Section 1.8.1 Exercises

- 1. Two of these triangles make up a rectangle of 5" wide and 12" long. So, the area of the triangle is half the area of the rectangle. $A = \frac{1}{2} \times 5 \times 12 = \frac{1}{2} \times 60 = 30$ in².
- 3. $A = W \times L = 7 \times 8 = 56 \text{ ft}^2$
- 5. The diagonal is a hypothenuse of a right triangle with legs 2 cm and 2 cm. Therefore, by the Pythagorean Theorem, $c^2 = 2^2 + 2^2$, i.e. $c^2 = 8$, i.e. $c = \sqrt{8}$. $\sqrt{4} < \sqrt{8} < \sqrt{9}$, i.e. $2 < \sqrt{8} < 3$. **Answer**: the length of the diagonal is $\sqrt{8}$ cm, and it is a value between 2 and 3.

Section 2.2.2 Exercises

- 1. The picture has two whole circles and $\frac{5}{6}$ of a circle. We can think of each whole circle as 6 sixths, so altogether the picture represents 6 + 6 + 5 = 17 sixths, i.e. $\frac{17}{6}$.
- 3. Divide a circle into 4 equal parts and shade in three of the parts.
- 5. With circles, we would have a whole circle (6 sixths) and 5 sixths of a circle. So we need the same picture as question 1, but with one whole circle removed.
- 7. We can represent $\frac{6}{2}$ as 3 whole squares, since each square is $\frac{2}{2}$: $\blacksquare + \blacksquare + \blacksquare$
- 9. Examples of five fractions that equal 0 are: $\frac{0}{1}$, $\frac{0}{2}$, $\frac{0}{3}$, $\frac{0}{10}$, $\frac{0}{2107}$

Section 2.3.2 Exercises

- 1. $\frac{19}{3} = 6\frac{1}{3}$ (because $19 \div 3 = 6R1$)
- 3. $\frac{135}{5} = 27$ (because $135 \div 5 = 27$)
- 5. $\frac{77}{5} = 15\frac{2}{5}$ (because $77 \div 5 = 15R2$)
- 7. average $\frac{11+14+9+12}{4} = \frac{46}{4} = 11\frac{2}{4} = 11\frac{1}{2}$

Section 2.3.4 Exercises

1.
$$1\frac{1}{2} = \frac{1 \cdot 2 + 1}{2} = \frac{3}{2}$$

3. $15\frac{3}{8} = \frac{15 \cdot 8 + 3}{8} = \frac{123}{8}$
5. $11\frac{5}{6} = \frac{11 \cdot 6 + 5}{6} = \frac{71}{6}$
7. $11 = \frac{11}{1} = \frac{22}{2} = \frac{44}{4}$

Section 2.4.1 Exercises

1.
$$\frac{1}{3} \cdot \frac{5}{7} = \frac{5}{21}$$

3. Two thirds of one third
$$= \frac{2}{3} \cdot \frac{1}{3} = \frac{2}{9}$$

5.
$$3 \cdot \frac{1}{8} = \frac{1}{1} \cdot \frac{1}{8} = \frac{1}{8}$$

7. $\frac{1}{2} \cdot \frac{7}{8} \cdot 3 = \frac{1}{2} \cdot \frac{7}{8} \cdot \frac{3}{1} = \frac{21}{16}$

Section 2.5.2 Exercises

1.
$$\frac{1}{4} = \frac{2}{8} = \frac{3}{12} = \frac{10}{40} = \frac{11}{44}$$

3. $\frac{1}{5} = \frac{10}{50} = \frac{2}{10} = \frac{3}{15} = \frac{8}{40}$
5. $\frac{1}{8} = \frac{11}{88} = \frac{2}{16} = \frac{3}{24} = \frac{10}{80}$
7. $\frac{12}{8} = \frac{12 \div 4}{8 \div 4} = \frac{3}{2} = 1\frac{1}{2}$
9. $\frac{20}{45} = \frac{20 \div 5}{45 \div 5} = \frac{4}{9}$
11. $\frac{54}{108} = \frac{54 \div 54}{108 \div 54} = \frac{1}{2}$

Section 2.6.1 Exercises

1. $60 = 2 \cdot 30 = 2 \cdot 15 \cdot 2 = 2 \cdot 3 \cdot 5 \cdot 2 = 2^2 \cdot 3 \cdot 5$, therefore $60 = 2^2 \cdot 3 \cdot 5$

- 3. $81 = 9 \cdot 9 = 3^4$, so $81 = 3^4$
- 5. $85 = 5 \cdot 17$

7. The only numbers divisible by 3 in the list 60, 48, 81, 360, 85 and 154 are: 60, 48 and 360

Section 2.6.3 Exercises

- 1. GCF(72,48) = 24
- 3. GCF(72,36) = 36
- 5. GCF(36,15) = 3
- 7. GCF(15,14) = 1

Section 2.6.5 Exercises

1.
$$\frac{36}{72} = \frac{36 \div 36}{72 \div 36} = \frac{1}{2}$$

3. $\frac{14}{48} = \frac{14 \div 2}{48 \div 2} = \frac{7}{24}$
5. $\frac{14}{15} = \frac{14}{15}$
7. $\frac{48}{180} = \frac{48 \div 12}{180 \div 12} = \frac{4}{15}$
9. $\frac{105}{147} = \frac{105 \div 21}{147 \div 21} = \frac{5}{7}$

Section 2.7.1 Exercises

1.
$$\frac{4^{\div 4}}{5} \cdot \frac{7}{12_{\div 4}} = \frac{1}{5} \cdot \frac{7}{3} = \frac{7}{15}$$

3. $12 \cdot \frac{5}{8} \cdot \frac{2}{5} = \frac{12}{1} \cdot \frac{5^{\div 5}}{8} \cdot \frac{2}{5_{\div 5}} = \frac{12^{\div 4}}{1} \cdot \frac{1}{8_{\div 4}} \cdot \frac{2}{1} = \frac{3}{1} \cdot \frac{1}{2} \cdot \frac{2}{1} = 3$
5. $\frac{2}{3}$ of $24 = \frac{2}{3} \cdot \frac{24}{1} = \frac{16}{1} = 16$
7. $2\frac{2}{3} \cdot 1\frac{3}{4} = \frac{8^{\div 4}}{3} \cdot \frac{7}{4_{\div 4}} = \frac{14}{3} = 4\frac{2}{3}$

9. If the tank is only three-fifths full $(\frac{3}{5} \text{ of the aquariums capacity})$, then we need to add $\frac{2}{5}$ of $12\frac{1}{2}$ gallons of water. So, we get $\frac{2}{5} \cdot 12\frac{1}{2} = \frac{2}{5} \cdot \frac{25}{2} = 5$ gallons.

Section 2.8.1 Exercises

1.
$$\frac{1}{5} + \frac{3}{5} = \frac{4}{5}$$

3. $\frac{11}{15} + \frac{13}{15} + \frac{8}{15} = \frac{32}{15} = 2\frac{2}{15}$
5. $\frac{5}{13} - \frac{4}{13} = \frac{1}{13}$
7. $\frac{109}{7} - \frac{11}{7} = \frac{98}{7} = 14$
9. $\frac{10}{7} + \frac{6}{7} - \frac{11}{7} = \frac{10 + 6 - 11}{7} = \frac{16 - 11}{7} = \frac{5}{7}$

Section 2.8.4 Exercises

- $1.\ {\rm LCM}$ is 50
- 3. LCM is 150
- 5. LCM is 36
- 7. LCM is 102
- 9. LCM is 72
- 11. LCM is 28

13. LCM is $3^4 \cdot 5^2 \cdot 7^2 \cdot 11$

Section 2.8.6 Exercises

1.
$$\frac{1}{5} + \frac{3}{6} = \frac{1^{\times 6}}{5_{\times 6}} + \frac{3^{\times 5}}{6_{\times 5}} = \frac{6+15}{30} = \frac{21}{30} = \frac{7}{10}$$

LCD = 30
3. $\frac{15^{\times 3}}{1_{\times 3}} + \frac{2}{3} = \frac{47}{3} = 15\frac{2}{3}$
LCD = 3
5. $\frac{2^{\times 20}}{3_{\times 20}} + \frac{3^{\times 15}}{4_{\times 15}} + \frac{4^{\times 12}}{5_{\times 12}} = \frac{133}{60} = 2\frac{13}{60}$
LCD = 60
7. $\frac{17}{51} - \frac{3}{50} = \frac{17^{\div 17}}{51_{\div 17}} - \frac{3}{50} = \frac{1}{3} - \frac{3}{50} = \frac{1^{\times 50}}{3_{\times 50}} - \frac{3^{\times 3}}{50_{\times 3}} = \frac{59}{150}$
LCD = 150
9. $\frac{11^{\times 5}}{5_{\times 5}} - \frac{2}{25} = \frac{55 - 2}{25} = \frac{53}{25} = 2\frac{3}{25}$
LCD = 25
11. $\frac{3^{\times 6}}{2_{\times 6}} - \frac{1}{12} = \frac{18 - 1}{12} = \frac{17}{12} = 1\frac{5}{12}$
LCD = 12
13. $\frac{11^{\times 5}}{20_{\times 5}} - \frac{2^{\times 4}}{25_{\times 4}} = \frac{55 - 8}{100} = \frac{47}{100}$
LCD = $2^2 \cdot 5^2 = 100$

Section 2.9.1 Exercises

- 1. Use LCD = 72. Decreasing order: $\frac{4}{9}, \frac{3}{8}, \frac{1}{3}$
- 3. $\frac{5}{12}$ is less than $\frac{7}{16}$. The LCD is 48.
- 5. The price went up.

Section 2.10.2 Exercises

1.
$$2\frac{1}{3}$$

3. $\frac{5}{14}$
5. $1\frac{1}{5}$

Section 2.10.4 Exercises

1. $\frac{2}{15}$ 3. $\frac{7}{10}$ 5. $\frac{1}{6}$

- 7. $3\frac{1}{33}$
- 9. We need $36 \div 1\frac{1}{2} = 36 \div \frac{3}{2} = \frac{36}{1} \cdot \frac{2}{3} = 24$ Answer: 24 of these pieces can be cut.

Section 2.11.2 Exercises

1.
$$1\frac{1}{3} + \frac{1}{2} = 1\frac{5}{6}$$

 $1+0=1$
 $\frac{1}{3} + \frac{1}{2} = \frac{2+3}{6} = \frac{5}{6}$
3. $1\frac{1}{5} + 10 = 11\frac{1}{5}$
5. $12\frac{11}{15} - 2\frac{13}{20} = 10\frac{1}{12}$
 $12 - 2 = 10$
 $\frac{11}{15} - \frac{13}{20} = \frac{44 - 39}{60} = \frac{5}{60} = \frac{1}{12}$
7. $1\frac{2}{3} - 1\frac{4}{13} = \frac{14}{39}$
 $1-1 = 0$
 $\frac{2}{3} - \frac{4}{13} = \frac{26 - 12}{39} = \frac{14}{39}$
9. $1\frac{1}{7} - \frac{3}{7} = \frac{8}{7} - \frac{3}{7} = \frac{5}{7}$
11. $3\frac{6}{7} - \frac{11}{12} = 2\frac{79}{84}$
 $3 - 0 = 3$; borrow 1 from 3, getting 2
 $1\frac{6}{7} - \frac{11}{12} = \frac{13}{7} - \frac{11}{12} = \frac{156 - 77}{84} = \frac{79}{84}$

Section 2.11.4 Exercises

- 1. 9 ft 4 in 6 ft 7 in = 8 ft 16 in 6 ft 7 in = 2 ft 9 in Answer: The length of the leftover pieces is 2 ft 9 in.
- 3. (a) The total length is 2 hrs 30 min + 2 hrs 15 min + 1 hr 45 min = 5 hrs 90 min = 6 hrs 30 min
 (6) The average is the total divided by 3. Answer: 2 hrs 10 min.

Section 2.12.1 Exercises

1.
$$\frac{3}{4} + \frac{2}{3} \div \frac{4}{9} = \frac{3}{4} + \frac{2^{\div 2}}{3_{\div 3}} \times \frac{9^{\div 3}}{4_{\div 2}} = \frac{3}{4} + \frac{3}{2} = \frac{3}{4} + \frac{6}{4} = \frac{9}{4} = 2\frac{1}{4}$$

3. $\left(\frac{3}{4} + 3\frac{1}{2}\right) - 2 = 4\frac{1}{4} - 2 = 2\frac{1}{4}$
 $0 + 3 = 3$
 $\frac{3}{4} + \frac{1}{2} = \frac{3}{4} + \frac{2}{4} = \frac{5}{4} = 1\frac{1}{4}$
5. $7\frac{1}{2} \div \frac{3}{5} + 1\frac{7}{8} \cdot 2\frac{2}{5} = \frac{15}{2} \cdot \frac{5}{3} + \frac{15}{8} \cdot \frac{12}{5} = \frac{25}{2} + \frac{9}{2} = \frac{34}{2} = 17$
7. The perimeter of a rectangle $P = 2W + 2L = 2 \cdot 1\frac{3}{4} + 2 \cdot 2\frac{1}{2} = \frac{7}{2} + 5 = 8\frac{1}{2}$ ft.