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HARMONIC MAPS

Amap F : M — N is harmonic if it is a critical point of the energy functional
1 2
JaN / |dF | dvolar,
2 D

where D is a compact domain in M.
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HARMONIC MAPS

Amap F : M — N is harmonic if it is a critical point of the energy functional
1 2
JaN / |dF | dvolar,
2 D
where D is a compact domain in M.

Hence, F' is harmonic if for any compactly supported variation F}, with
Fy = F, we have

dF:||"dvolr = 0.
dm/n | dvol as

For maps F : S* — S™ c R™"*, the Euler-Lagrange equation is

0 f
020z

f:8% = 8™ cR™ ! harmonic «— = \f

where

® (z,Zz) are holomorphic coordinates in S* (say stereographic projection).

® )\ is a scalar function.

_p3



INITIAL GOAL

Find (all) maps

satisfying

f:Sz—>Sm

0% f B
020z

A,
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STEP 1

If the image of f in S™ lies in a totally geodesic subsphere S* C S™, then
f =1io0 e, where

® »:8% = S¥islinearly full

® ;.9% s 9™ is an isometric immersion.
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STEP 1

If the image of f in S™ lies in a totally geodesic subsphere S* C S™, then
f =1io0 e, where

® »:8% = S¥islinearly full
® ;.9% s 9™ is an isometric immersion.

A map ¢ : S? — S* is linearly full (or full for short) if its image does not lie in a
proper geoedesic subsphere of S*. Pictorially:

Full Not full

Hence, we only need to study linearly full maps ¢ : S? — S*.
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MODIFIED GOAL 1

Find (all) linearly full maps

satisfying
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FACTS (Calabi, 1967)

If p: 5% = 8% c R**t c C*! is harmonic and linearly full,

0w &y 0w &y L
. . - | = . - | = > 1.
8 (02“323> (82%’853 0, fori+j =1
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FACTS (Calabi, 1967)

If p: 5% = 8% c R**t c C*! is harmonic and linearly full,

1 (

) J ) J
Oy 8gp):(8go 3@)207 fori+j5 > 1.

0zt 0zI 0zt 0zI
NOTATION:
U1 U1
(15 V2
For u = LU = - CN,
UN UN
N N
(’LT, ?7) = Z UL VE and <’Uf, ?7) = Z UL VE

A subspace V c C" is called isotropic if (&#,7) =0 Vu,7 € V.
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FACTS (Calabi, 1967)

If p: 5% = 8% c R**t c C*! is harmonic and linearly full,

0w &y 0w &y L
. . - | = . - | = > 1.
8 (02“323> (82%’853 0, fori+j =1

2. kiseven, say k = 2n. So we assume ¢ : §? — §%" c R*"*T1 c ¢l
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FACTS (Calabi, 1967)

. 5% — S* ¢ R*! ¢ C**! is harmonic and linearly full,

0w &y 0w &y L
— — > 1.
(02“023') (82“823‘ 0, fori+j =1

k is even, say k = 2n. So we assume ¢ : §? — §?* ¢ R*"+1 c ¢c*

The osculating plane ,
_ Op ¢ 0%
¢_Span{az’ 0z2’ "7 azn}

can be defined at every point of S>.
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FACTS (Calabi, 1967)

. 5% — S* ¢ R*! ¢ C**! is harmonic and linearly full,

0w &y 0w &y L
— — > 1.
<0Zi’0zj> (827?’823' 0, fori+j =1

k is even, say k = 2n. So we assume ¢ : §? — §?* ¢ R*"+1 c ¢c*

The osculating plane ,
_ Op ¢ 0%
¢_Span{az’ 0z2’ "7 azn}

can be defined at every point of S>.
This induces amap ¢ : S* — 2, C Gr(n,C*"""), where

® Z,={P¢cGr(n,C*") : (4,v) =0 Vi,7 € P}is aregular,
compact, projective variety.

® There is a surjective Riemannian submersion « : Z,, — 5" such
that o = 7w o 1.
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FACTS (Calabi, 1967)

. 5% — S* ¢ R*! ¢ C**! is harmonic and linearly full,

k is even, say k = 2n. So we assume ¢ : §? — §?* ¢ R*"+1 c ¢c*

The osculating plane ,
_ Op 07 O07p
¢_Span{az’ 0z2’ "7 azn}

can be defined at every point of S2.

This induces amap ¢ : S* — 2, C Gr(n,C*"""), where
® Z,={P¢cGr(n,C*") : (q,v) = 0 Vi,T € P}is aregular,
compact, projective variety.

® There is a surjective Riemannian submersion « : Z,, — 5" such
that o = 7w o 1.

. @: 8% — 5% Y S° = 2,
Then: {harmonic, full} = {holomorphic, horizontal, full

_p8



FACTS (Calabi, 1967)

. 5% — S* ¢ R*! ¢ C**! is harmonic and linearly full,

The osculating plane ,
_ Op 07p ¢
w_Span{az’ 0z2’ "’ azn}
2

can be defined at every point of S

This induces a map ¢ : S — Z,, C Gr(n,C*"*"), where

® z,={P¢cGr(n,C*"™): (&,7) =0 Vi,v € P}isaregular,
compact, projective variety.

® There is a surjective Riemannian submersion r : Z,, — 5" such

that o = m o).
_ @:S% — S S = 2,
Then: {harmonic, full} = {holomorphic, horizontal, full
Conversely:

{ VS8 — Z, } N {g0::|:7ro¢:S2—>S2n}

holomorphic, horizontal, full harmonic, full
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FACTS (Calabi, 1967)

. 5% — S* ¢ R*! ¢ C**! is harmonic and linearly full,

This induces amap ¢ : S* — 2, C Gr(n,C*"""), where

® Z,={P¢cGr(n,C*") : (q,v) =0 Vi,7 € P}is aregular,
compact, projective variety.

® There is a surjective Riemannian submersion « : Z,, — 5" such

that o = w0 1.
_ ©:S% — §*" 8% = 2,
Then: {harmonic, full} = {holomorphic, horizontal, full
Conversely:

{ Y8 — Z, } N {g0::|:7ro¢:52—>52n}

holomorphic, horizontal, full harmonic, full

Furthermore (Barbosa, 1974)
Area(p(S?)) = 4nd,
where d is the algebraic degree of ¥ in Z,.
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MODIFIED GOAL 2

Find (all) linearly full, holomorphic and horizontal maps
) S*— 2,

of degree d.
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MODIFIED GOAL 2

Find (all) linearly full, holomorphic and horizontal maps
v S Z,
of degree d.

Then ¢ = £ o9 : S? — S*™ will be harmonic and linearly full, with area 4d.

(And all such ¢ will have this form.)
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MODIFIED GOAL 2

Find (all) linearly full, holomorphic and horizontal maps
v S Z,
of degree d.

Then ¢ = £ o9 : S? — S*™ will be harmonic and linearly full, with area 4d.

(And all such ¢ will have this form.)

(n+1)

NOTE: there exist such v if and only if d > n (Barbosa, 1976).
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STEP 3

Use the following parametrization of Z,,: given an orthonormal basis of C*"**,

/8:{EO7E17---,En,E1,...7En}

define the bi-rational map

n(n+1)
bg : CP™ 2 — Zn

a.
[s:ozl:---:an:ﬁg:---:Tn_l,n] — span{on—l—Ei—

—p. 10



STEP 3

Use the following parametrization of Z,,: given an orthonormal basis of C*"**,

/8:{EO7E17---,En,E1,...7En}

define the bi-rational map

n(n+1)
bg : CP™ 2 — Zn

a.
[s:ozl:---:an:ﬁg:---:Tn_l,n] — span{on—l—Ei—

Then a computation shows:

( ) ( ~ n(n—|—1) )

WS Z, zp::bglo¢:52—>CP 2

holomorphic holomorphic
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STEP 3

Use the following parametrization of Z,,: given an orthonormal basis of C*"**,

/8:{EO7E17---,En,E1,...7En}

define the bi-rational map

n(n+1)
bg : CP™ 2 — Zn

a.
[s:ozl:---:an:ﬁg:---:Tn_l,n] — span{on—l—Ei—

Then a computation shows:

( ) f ~ n(n+1) Y

WS Z, zp::bglo¢:52—>CP 2
holomorphic holomorphic
{ horizontal ( < | ajoy— oo = sTj; — 8'Tij
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STEP 3

Use the following parametrization of Z,,: given an orthonormal basis of C*"**,

/8:{EO7E17---,En,E1,...7En}

define the bi-rational map

n(n+1)
bg : CP™ 2 — Zn

a.
[s:ozl:---:an:ﬁg:---:Tn_l,n] — span{on—l—Ei—

Then a computation shows:

( ) f ~ n(n+1) Y

18?2, i=bylon: ST = CPT
holomorphic holomorphic
\ horizontal ( T iy — o =sT); —s'Ti;

linearly full Wr(s,a1,...,a,) Z0
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STEP 3

Use the following parametrization of Z,,: given an orthonormal basis of C*"**,

/8:{EO7E17---,En,E1,...7En}

define the bi-rational map

n(n+1)
bg : CP™ 2 — Zn

a.
[s:ozl:---:an:ﬁg:---:Tn_l,n] — span{on—l—Ei—

Then a computation shows:

(.52 2, (§=b;'0p: 8> 5 CP T |
holomorphic holomorphic

{ horizontal ( < | iy — oo = sT; — 8’y (
linearly full Wr(s, a1,...,an) Z0

. of degree d ) \ of degree d )
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MODIFIED GOAL 3

Find (all) holomorphic maps {5: S? — CIP% given by
Z—)QZ(Z) =[stay:- rQp T Tp—1p)

of degree d, satisfying, for 1 <i,5 <n,

/ / / /

1 17

plus the open condition:  Wr(s,aq,...,a,) Z 0.
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MODIFIED GOAL 3

Find (all) holomorphic maps {5: S? — CIP% given by
Z—)QZ(Z) =[stay:- rQp T Tp—1p)

of degree d, satisfying, for 1 <i,5 <n,

/ /
Q5 — Oéj

— / / o .

plus the open condition:  Wr(s,aq,...,a,) Z 0.

Then ¢ =bg o {E: S? — Z, will be a holomorphic, horizontal, linearly full map
of degree d. (And all such ) will have this form for some basis 3.)
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MODIFIED GOAL 3

Find (all) holomorphic maps {5: S? — CIP% given by
Z—)QZ(Z) =[stay:- rQp T Tp—1p)

of degree d, satisfying, for 1 <i,5 <n,

/ /
Q{i()é] — Oé]

/ /
oy = 87‘7;]- — S Tz'j,

plus the open condition:  Wr(s,aq,...,a,) Z 0.

Then ¢ =bg o {E: S? — Z, will be a holomorphic, horizontal, linearly full map
of degree d. (And all such ) will have this form for some basis 3.)

We can assume:
® s,ai, T, are polynomials of maximum degree d in a complex variable z.
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MODIFIED GOAL 3

Find (all) holomorphic maps {5: S? — CIP% given by
Z—)QZ(Z) =[stay:- rQp T Tp—1p)

of degree d, satisfying, for 1 <i,5 <n,

/ /
Q5 — Oéj

/
i oy =— ST,

1}

/
— STija

plus the open condition:  Wr(s,aq,...,a,) Z 0.

Then ¢ =bg o {E: S? — Z, will be a holomorphic, horizontal, linearly full map
of degree d. (And all such ) will have this form for some basis 3.)

We can assume:
® s,ai, T, are polynomials of maximum degree d in a complex variable z.

FURTHER, it suffices to consider the case where
® s has d simple complex zeros z1, 22, ..., z4.

® ai(z) #0forallt=1,2,....d.
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PARTICULARCASE n =2and n =3

For n = 2, the equations above read
/ / / /
Q102 — 1y = 8Ty — S T12

For n = 3,

/ /
ST12 — S T12

/ /
102 — X109

/ /
STogz — § 723

/ /
Oo(X3 — (X203

/ / / /
Qzxp — 3(xy = S8T31 — S T31

Remember that We can assume

® s,ay, T are polynomials of maximum degree d in a complex variable z.
® s has d simple complex zeros z1, z2, ..., z4.
® ai(z¢) #Oforallt=1,2,...,d.
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ANALYSIS OF THE SYSTEM

/ /
00 — 00 (nj)’

/ / / /
;0 — Q0 = 8T — S Tyjy <
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ANALYSIS OF THE SYSTEM

/
J

/ /
Qj = S8T;; — S Tiyj <

/ /
p o0 — 000G (TG
;0 — % -

I has no residues

/ /
Q0 — QO
Tij:s/ 7 dz has degree < d.
\ S
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ANALYSIS OF THE SYSTEM

/
Q0 — QO Tii \'
Oé;Oéj — oz;-ozi = STZ-/j — S'nj < . 2 T = (%)
( oo — ooy
< has no residues
S
< / /
Q0 — OO
Tij:s/ 7 dz has degree < d.
\ S
Since s has simple zeros at z1, . . ., z4,

® The second condition is a consequence of the first.
® The residue condition can be written

82
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ANALYSIS OF THE SYSTEM

/
Q0 — QO Tii \'
Oé;Oéj — oz;-ozi = STZ-/j — S'nj < . 2 T = (%)
( oo — ooy
< has no residues
S
< / /
Q0 — OO
Tij:s/ 7 dz has degree < d.
\ S
Since s has simple zeros at z1, . . ., z4,

® The second condition is a consequence of the first.
® The residue condition can be written

/

/ . . . /
((2—23)2 ;O 053042> :()7 1 <£§ d.

82

A simple computation gives that this is equivalent to the condition

s|Wr(s, ai, ;).
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ANALYSIS OF THE SYSTEM

Write

/ /

S Ay — QA Q5

(z—z¢) a; = a0 S+ g iy o Tij = tijo S—I—S/ = dz
=1 ¢

||::]g

(Note that ¢;,0 are arbitrary complex numbers.)
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ANALYSIS OF THE SYSTEM

Write

/ /

S Ay — QA Q5

(z—z¢) a; = a0 S+ g iy o Tij = tijo s+s/ = dz
=1 ¢

||::]g

(Note that ¢;,0 are arbitrary complex numbers.)

The condition s | Wr(s, a;, ;) becomes

CLME —aeg =0,1§£§d
Zg—zk, ZE_Zk
k#4 kAl
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ANALYSIS OF THE SYSTEM

Write

||::]g

/ /
(z—z¢) a; = a0 S+ g iy o Tij = tijo S—I—S/ dz
=1 ¢

(Note that ¢;,0 are arbitrary complex numbers.)

The condition s | Wr(s, a;, ;) becomes

CLME —aeg =0,1§£§d
Zg—zk, ZE_Zk
k#4 kAl

Another view: set of integral elements of the exterior differential system
generated by the forms

we:z de/\ng7 1§€§d
k#(ze—z’“)Q
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ANALYSIS OF THE SYSTEM

Since 0 # a1(z¢) = a1es’(2¢), we must have a1, # 0, and then

air Y Lok —aje Y Gik
Z (e — z1)2 (ze — 21)%

kL kL

a1k Ak
<~ Qi E 5 — a1e E 5 — 0,
kAL (2e — 2k) kAL (2 — 2k)

1<l<d,1<ij<n

1<0<d1<i<n
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ANALYSIS OF THE SYSTEM

Since 0 # a1(z¢) = a1es’(2¢), we must have a1, # 0, and then

air Y Lok —aje Y Gik
Z (e — z1)2 (ze — 21)%

=, =,
< Ay Z A1k — a1y Z ik =0
1 - 9
ey, C ey, (2 — 21)?
Aik
— Agaw—z(%_%y =0, 1<¢<d
Py,
1 a1k
where \y = — :
T au Z (ze — 21)?

kA0

1<l<d,1<ij<n

1<0<d1<i<n
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ANALYSIS OF THE SYSTEM

Since 0 # a1(z¢) = a1es’(2¢), we must have a1, # 0, and then

ajk Qik .
i g — aj E =0, 1</<d,1<4,57<
Ay (Ze — Zk)Q Ay (Ze — Zk)2 S S S, >=nNn

k0 k0
ailk Aik )
<~  ai — a1y =0, 1</<d,1<1<n
Z g;g (2e — 2)? g;g (2e — 21)?
Aik
— Agaw—z(%_%y =0, 1<¢<d
=,
1 a1k
where \y = — :
a1y ; (ze — 21)?

In matrix notation this can be written with the single equation

A1 1 _ ... -1 _
( ) (z1—22)2 (21 _1Zd)2\ air a21 ... Qni
(22—21)2 A2 " (32—24)? 12 422 ... (On2
— O,
K 1 1 . Ad ) ai1q Aa2d ... and
(zq—=21)2 (zqg—22)2

where \,,, 1 < m < d, are implicitly defined.

—p. 15



MODIFIED GOAL 4 - FINAL!

Find (all) solutions of the algebraic equations

2 )\2

(22—21)

1
( )\1 (21_22)2
1

\ 1 1
(za—21)?  (24—22)?

1

(21—24)

1
(22—24)

Ad

2\

2

/

(all a21 .« .. anl\
aio a9 “ . aAn?2
\ald asd - .- and)

where the last matrix has rank n (to guarantee linear fullness).
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MODIFIED GOAL 4 -

FINAL!

Find (all) solutions of the algebraic equations

1 1
B =
1
EErr R R e -
1 1
\(Zd—21)2 (zg—22)2 Ad )

/an a21
a2 a2
\au asd

anl\

aAn?2

and)

where the last matrix has rank n (to guarantee linear fullness).

Then, taking your favorite complex numbers a;o and ¢;;0 and defining

|::]g

S
Z Z£ o, = a0 S+ g Qip s -
=1 ¢

glves a solutlon of the equation
Oé;Oéj — 043-047; = ST,L-/j

(And all other solutions arise the same way.)

/
Ti; = tijo S-I-S/ = dz

/
— S Tq;j.

/

—p. 16



SUMMARY OF RECIPE

To construct (any) linearly full harmonic map of degree d from S?to 52",

—p. 17



SUMMARY OF RECIPE

To construct (any) linearly full harmonic map of degree d from S?to 52",
1. Choose d, n, withd > n(n +1)/2.
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SUMMARY OF RECIPE

To construct (any) linearly full harmonic map of degree

1. Choose d, n, withd > n(n +1)/2.

2. Find z,, \¢, 1 < ¢ < d, such that

Nul

( A1

1
(zo—21)2

Nerene

1

(z1—22)2

A2

(zq—22)2

)

(z2—2q)>

d from S?2to S?"
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SUMMARY OF RECIPE

To construct (any) linearly full harmonic map of degree

1. Choose d, n, withd > n(n +1)/2.
2. Find z,, \¢, 1 < ¢ < d, such that

1
/ >‘11 (21 —22)2
(zo—21)2 A2

Nul

\; 1
(zqg—21)2 (zq—22)2

3. Find linearly independent vectors (a1, . . .

kernel of the matrix above.

)

(z2—2q)>

v

, Gid) e C% 1<i<n,inthe

d from S?2to S?"
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SUMMARY OF RECIPE

To construct (any) linearly full harmonic map of degree d from S?to 52",
1. Choose d, n, withd > n(n +1)/2.
2. Find z,, \¢, 1 < ¢ < d, such that

1 1
( >\11 (21;\22)2 S (21 _12d)2\
(z2—21)? 2 T Gza)?
Nul (2-1) | | (2.d) > n.
1 1 ' '
\(Zd—21)2 (zq—22)2 Ad )
3. Find linearly independent vectors (a1, ..., a:qd) € C% 1<i<mn,inthe

kernel of the matrix above.
4. Choose complex numbers a;o and ¢;;0, 1 < i < j < n.

d

d / /

S ;05 — OGO

Let s = (z—z¢) Q; = a;05+ g ;v Ti; = tijo S+5 5 L dz
e = s

—p. 17



SUMMARY OF RECIPE

To construct (any) linearly full harmonic map of degree d from S?to 52",
1. Choose d, n, withd > n(n +1)/2.
2. Find z,, \¢, 1 < ¢ < d, such that

1 1
( >\11 (21;\22)2 S (21 _12d)2\
(z2—21)? 2 T Gza)?
Nul (2-1) | | (2.d) > n.
1 1 ' '
\(Zd—21)2 (zq—22)2 Ad )
3. Find linearly independent vectors (a1, ..., a:qd) € C% 1<i<mn,inthe

kernel of the matrix above.
4. Choose complex numbers a;o and ¢;;0, 1 < i < j < n.

d d / /
S a0 — QG
Let s = | | (z—2¢) Q= ai05‘|‘z Qg Tij = Lijo S""S/ — 2 — dz
z— 2y s
5. Write¢p =[s:a1: - :Qn:Ti2: - Tn—1n]. Then
@Y =TO b@ o @b

Is a linearly full harmonic map. (And all such arise this way!)
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NUMEROLOGY - degrees of freedom (D.F.)

To construct (any) linearly full harmonic map of degree
1. Choose d, n, withd > n(n +1)/2.
2. Find z,, \¢, 1 < ¢ < d, such that

Nul

3. Find linearly independent vectors (a1, . . .

( A1

1

(z2—21)2

\ G

1

A2

I S
(zq—22)2

kernel of the matrix above.

4. Choose complex numbers a;o and 50, 1 <i < j <n.—

d

Let s = H(Z—Zg)

=1

5. Write ) = [s : a1 : -

d
S
Qi = A0S+ g (027

1
(z1—22)2 (21—12d)2\

(z2—2q)>

v

/
Tij = Tij0 S—I—S/ =2 dz

— z—u
$IQp ITI2 i Tn—1.m]. ThEN
p=mobgor

d from S2to S?"

, Gid) e C% 1<i<n,inthe

n(n + 1)
2

D.F.

/

Is a linearly full harmonic map. (And all such arise this way!)
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NUMEROLOGY - degrees of freedom (D.F.)

To construct (any) linearly full harmonic map of degree d from S?to 52",
1. Choose d, n, withd > n(n +1)/2.

2. Find z,, \¢, 1 < ¢ < d, such that

1 1
( >\11 (»’/31;\22)2 (=1 _12d)2\
Go—21)2 2 " Ga—2g)?
Nul (2-1) | | (2.d) > n.
1 1 ' '
\(Zd—m)2 (zq—22)2 Ad )
3. Find linearly independent vectors (a1, ..., a:qd) € C% 1<i<mn,inthe
kernel of the matrix above. — n? D.F.
L n(n + 1)
4. Choose complex numbers a;o and 50, 1 <i < j < n.— — D.F.
d d s oo — il
Let s = H(z—ze) o = aios+z %7 . 2, Tij = tij0 S—I—s/ t 2 ! dz
£=1 £=1
5. WriteJ: [s:aQi: - :an:Ti2: " Th—1,n]. Then
@Y =TO bﬁ @) ?;5

Is a linearly full harmonic map. (And all such arise this way!)
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NUMEROLOGY - degrees of freedom (D.F.)

To construct (any) linearly full harmonic map of degree d from S?to 52",
1. Choose d, n, withd > n(n +1)/2.

2. Find z,, \¢, 1 < ¢ < d, such that

1 1
(M GmE T G
1 1
(z2—21)2 A2 Y (z2—2q)2
Nul | | | _ > n. — D.F.?7?
1 1 ' '
\(Zd—Zl)2 (zq—22)2 Ad )
3. Find linearly independent vectors (a1, ..., a:qd) € C% 1 <i<mn,inthe
kernel of the matrix above. — n? D.F.
L n(n + 1)
4. Choose complex numbers a;o and 50, 1 <i < j < n.— — D.F.
d d s oo — il
Let s = H(z—ze) o = aios+z %7 . 2, Tij = tij0 S—I—s/ t 2 ! dz
£=1 £=1
5. WriteJ: [s:aQi: - :an:Ti2: " Th—1,n]. Then
@Y =TO bﬁ @) ?;5

Is a linearly full harmonic map. (And all such arise this way!)
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NUMEROLOGY

What is the dimension of the set of complex numbers z,, A\p, 1 < /¢ < d, s.t.

S S
( A1 (21 —22)2 (zl_zd)2\
1 \ S S
(z2—z1)2 2 (22—24)2 :
YA = _ _ _ _ has nullity at least n?

K(Zd_izl)Q (Zd—i22)2 L )\.d )
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The set of matrices of the form >, x with nullity > n is the intersection of

® The set of matrices of the form ¥, x — 2d — 1
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(z2—z1)2 2 (22—24)2 :
Yz = _ _ _ _ has nullity at least n?
1 1 ' '
K(Zd—zl)2 (zg—22)2 Ad )

The set of matrices of the form >, x with nullity > n is the intersection of

® The set of matrices of the form ¥, x — 2d — 1

d(d+1)  n(n+1)
2 2

® The set of symmetric matrices with nullity > n —

This is at least 2d — 1 — 21 Thus, the dimension of the set of complex
numbers z,, A¢, 1 < £ < d, such that nul(3; x) > n is at least

n(n+ 1)
2

Adding the degrees of freedom of the previous page we obtain that our recipe
constructs a set of dimension at least

2d —

2d—@+n2+wz2d+n2.
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MORE NUMEROLOGY

Consider the projections (well defined since a(z;) # 0, 1 < £ < d)

[S:Q1t i Qpo1 i Qn T2t i The2mo1Tin i Ta—1,n] € PDI(S?,CPMtH/2)
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® The image of each p,, has codimension at least 1.
® The fiber of p,,—1 has dimension atleastn +1+n — 1 = 2n.
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® The image of each p,, has codimension at least 1.
® The fiber of p,,—1 has dimension atleastn +1+n — 1 = 2n.

By induction, assume dim(PD/ (52, CP"("~1/2)) < 2d 4 (n — 1)2. Then

dim(PD/ ($?,CP""tV/2)) < dim(Im(p,_1)) + dim(fiber)

—-p. 19



MORE NUMEROLOGY

Consider the projections (well defined since a(z;) # 0, 1 < £ < d)
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[star:tano1 T2t T2 e PD/(S2,CPDn/2)
} Pn—2
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[s a1 ag: Ti2] c PD/ (5% CP?)
P
(s : ] c PD/(S% CP')

® The image of each p,, has codimension at least 1.
® The fiber of p,,—1 has dimension atleastn +1+n — 1 = 2n.

By induction, assume dim(PD/ (52, CP"("~1/2)) < 2d 4 (n — 1)2. Then

dim(PD/ ($?,CP""tV/2)) < dim(Im(p,_1)) + dim(fiber)
< 2d+(n—1)*>—142n=2d+n’.
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SOME OPEN PROBLEMS

® These sets of harmonic maps are algebraic varieties. Are they
manifolds?

® Adapt this recipe to maps from Riemann surfaces other than S2.

—-p. 20
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