What we have studied so far, in two pages

Suppose that A is a matrix, B is an echelon form of A, and \vec{b} is any vector. Let us define T to be the transformation $T(\vec{x}) = A\vec{x}$. Then

- The columns of A are linearly independent $\iff B$ has a pivot in every column.
- B has a pivot in every column \iff The equation $A\vec{x} = \vec{b}$ has at most one solution.
- By definition, T is one to one \iff for any \vec{b} , the equation $T(\vec{x}) = \vec{b}$ has at most one solution. \iff for any \vec{b} , the equation $A\vec{x} = \vec{b}$ has at most one solution.

Summarizing, the following statements are equivalent (which means that if one of them is true, the others are also true):

- T is one to one.
- The columns of A are **linearly independent**.
- The equation $A\vec{x} = \vec{b}$ has **at most** one solution, for all \vec{b} .
- The equation $A\vec{x} = \vec{0}$ has only the trivial solution $(\vec{x} = \vec{0})$.
- *B* has a pivot in **every** column.

NOTE ALSO: if A is an $n \times m$ matrix (which means that $T : \mathbb{R}^m \to \mathbb{R}^n$) then, if n < m (that is, A has more columns than rows), the echelon form of A cannot have a pivot in every column, so:

T cannot be injective if it goes from a "bigger space" to a "smaller space".

At the other end, recall:

- The rows of A are linearly independent $\iff B$ has a pivot in every row.
- B has a pivot in every row \iff The equation $A\vec{x} = \vec{b}$ has at least one solution.
- By definition, T is onto \iff for any \vec{b} , the equation $T(\vec{x}) = \vec{b}$ has at least one solution. \iff for any \vec{b} , the equation $A\vec{x} = \vec{b}$ has at least one solution.

Summarizing, the following statements are equivalent (which means that if one of them is true, the others are also true):

• T is onto.

- The rows of A are linearly independent.
- The equation $A\vec{x} = \vec{b}$ has **at least** one solution, for all \vec{b} .
- *B* has a pivot in **every** row.

NOTE ALSO: if A is an $n \times m$ matrix (which means that $T : \mathbb{R}^m \to \mathbb{R}^n$) then, if n > m (that is, A has more rows than columns), the echelon form of A cannot have a pivot in every column, so:

T cannot be onto if it goes from a "smaller space" to a "bigger space".

Now suppose that A is an $n \times n$ square matrix, that is, n rows and n columns. As before, let B be an echelon form of A, and \vec{b} any vector. Then Suppose that A is a matrix, and B is an echelon form of A. Let T be the transformation $T(\vec{x}) = A\vec{x}$. Then note that because A (and therefore B) has n rows and n columns,

B has a pivot in every **column** \iff B has n pivots \iff B has a pivot in every **row**

Note also that if *B* has a pivot in every column and in every row, then the equation $A\vec{x} = \vec{b}$ has, on the one hand, **at most** one solution, and on the other, **at least** one solution, from which we conclude that it has **exactly one** solution:

B has a pivot in every row and column $\iff A\vec{x} = \vec{b}$ has exactly one solution

Using this and the results in the previous page we get the Big Theorem:

If $T : \mathbb{R}^n \to \mathbb{R}^n$ is given by $T(\vec{x}) = A\vec{x}$, and if B is an echelon form of A, then

- 1. T is one to one.
- 2. The columns of A are linearly independent.
- 3. B has a pivot in **every** column.
- 4. *B* has a pivot in **every** row.
- 5. The equation $A\vec{x} = \vec{b}$ has **exactly** one solution, for all \vec{b} .
- 6. The columns of A span \mathbb{R}^n .
- 7. T is onto.