What we have studied so far, in two pages

Suppose that A is a matrix, B is an echelon form of A, and \vec{b} is any vector. Let us define T to be the transformation $T(\vec{x})=A \vec{x}$. Then

- The columns of A are linearly independent $\Longleftrightarrow B$ has a pivot in every column.
- B has a pivot in every column \Longleftrightarrow The equation $A \vec{x}=\vec{b}$ has at most one solution.
- By definition, T is one to one \Longleftrightarrow for any \vec{b}, the equation $T(\vec{x})=\vec{b}$ has at most one solution.
\Longleftrightarrow for any \vec{b}, the equation $A \vec{x}=\vec{b}$ has at most one solution.
Summarizing, the following statements are equivalent (which means that if one of them is true, the others are also true):
- T is one to one.
- The columns of A are linearly independent.
- The equation $A \vec{x}=\vec{b}$ has at most one solution, for all \vec{b}.
- The equation $A \vec{x}=\overrightarrow{0}$ has only the trivial solution $(\vec{x}=\overrightarrow{0})$.
- B has a pivot in every column.

NOTE ALSO: if A is an $n \times m$ matrix (which means that $T: \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$) then, if $n<m$ (that is, A has more columns than rows), the echelon form of A cannot have a pivot in every column, so:

$$
T \text { cannot be injective if it goes from a "bigger space" to a "smaller space". }
$$

At the other end, recall:

- The rows of A are linearly independent $\Longleftrightarrow B$ has a pivot in every row.
- B has a pivot in every row \Longleftrightarrow The equation $A \vec{x}=\vec{b}$ has at least one solution.
- By definition, T is onto \Longleftrightarrow for any \vec{b}, the equation $T(\vec{x})=\vec{b}$ has at least one solution.
\Longleftrightarrow for any \vec{b}, the equation $A \vec{x}=\vec{b}$ has at least one solution.
Summarizing, the following statements are equivalent (which means that if one of them is true, the others are also true):

- T is onto.

- The rows of A are linearly independent.
- The equation $A \vec{x}=\vec{b}$ has at least one solution, for all \vec{b}.
- B has a pivot in every row.

NOTE ALSO: if A is an $n \times m$ matrix (which means that $T: \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$) then, if $n>m$ (that is, A has more rows than columns), the echelon form of A cannot have a pivot in every column, so:

[^0]Now suppose that A is an $n \times n$ square matrix, that is, n rows and n columns. As before, let B be an echelon form of A, and \vec{b} any vector. Then Suppose that A is a matrix, and B is an echelon form of A. Let T be the transformation $T(\vec{x})=A \vec{x}$. Then note that because A (and therefore B) has n rows and n columns,

$$
B \text { has a pivot in every column } \Longleftrightarrow B \text { has } n \text { pivots } \Longleftrightarrow B \text { has a pivot in every row }
$$

Note also that if B has a pivot in every column and in every row, then the equation $A \vec{x}=\vec{b}$ has, on the one hand, at most one solution, and on the other, at least one solution, from which we conclude that it has exactly one solution:

$$
B \text { has a pivot in every row and column } \Longleftrightarrow A \vec{x}=\vec{b} \text { has exactly one solution }
$$

Using this and the results in the previous page we get the Big Theorem:
If $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is given by $T(\vec{x})=A \vec{x}$, and if B is an echelon form of A, then

1. T is one to one.
2. The columns of A are linearly independent.
3. B has a pivot in every column.
4. B has a pivot in every row.
5. The equation $A \vec{x}=\vec{b}$ has exactly one solution, for all \vec{b}.
6. The columns of A span \mathbb{R}^{n}.
7. T is onto.

[^0]: T cannot be onto if it goes from a "smaller space" to a "bigger space".

