MATH 42 - Linear Algebra

QUIZ 1. Time allowed: one hour. Professor Luis Fernández

NAME:_

INSTRUCTIONS: Solve the following exercises. **You must show all your work** in order to receive any credit.

[15] **1.** Find the value(s) of k so that the following linear system is consistent (that is, has at least one solution):

$$\begin{cases} 3x_1 - 5x_2 = 4\\ 9x_1 + kx_2 = -1 \end{cases}$$

[20] **2.** Determine if the vector $\vec{b} = \begin{pmatrix} -10 \\ -8 \\ 9 \end{pmatrix}$ is in the span of the vectors $\vec{a}_1 = \begin{pmatrix} -1 \\ 4 \\ -3 \end{pmatrix}$ and $\vec{a}_2 = \begin{pmatrix} 2 \\ 8 \\ -7 \end{pmatrix}$. If it is, write \vec{b} as a linear combination of \vec{a}_1 and \vec{a}_2 .

[15] **3.** Determine if the vectors
$$\vec{u} = \begin{pmatrix} 1 \\ -1 \\ 2 \end{pmatrix}, \vec{v} = \begin{pmatrix} 0 \\ 4 \\ 1 \end{pmatrix}, \vec{w} = \begin{pmatrix} 2 \\ 6 \\ 7 \end{pmatrix}$$
 are linearly independent.

[15] **4.** Suppose that a linear transformation $T : \mathbb{R}^n \to \mathbb{R}^2$ satisfies $T(\vec{u_1}) = \begin{pmatrix} 3 \\ -1 \end{pmatrix}$ and $T(\vec{u_2}) = \begin{pmatrix} 4 \\ 5 \end{pmatrix}$. Find $T(4\vec{u_1} - 3\vec{u_2})$.

[20] 5. Let $T : \mathbb{R}^3 \to \mathbb{R}^2$ be the linear transformation given by $T(\vec{x}) = \begin{pmatrix} 1 & 2 & -1 \\ -2 & 5 & 4 \end{pmatrix} \vec{x}$. a) Determine if T is one to one.

b) Determine if T is onto.

[15] **6.** Multiply the following matrices:

$$\begin{pmatrix} 4 & 1 \\ -3 & 0 \\ 3 & 5 \end{pmatrix} \cdot \begin{pmatrix} 1 & 2 & 0 \\ 0 & -1 & 3 \end{pmatrix}$$

- [10] 7. BONUS. A matrix A is called *idempotent* if $A^2 = A$. For example, I and $0_{2\times 2}$ are idempotent.
 - a) Find a 2×2 matrix, not equal to I or $0_{2 \times 2}$, that is idempotent.
 - **b)** Prove that if A is idempotent, then so is I A.