MTH 42. Linear Algebra. Midterm exam. Fall 2025.

Professor Luis Fernández

Name:__

INSTRUCTIONS:

- This exam contains 8 questions, 5 pages for a total of 100 points plus a 10-point bonus question.
- You have 110 minutes to complete the exam.
- You must show all your work in order to get credit.
- You can use a non-graphing scientific calculator. No other electronic devices, notes or books are permitted.
- 1. (18 points) Determine if the following statements are true or false (circle \mathbf{T} or \mathbf{F}). You do not need to justify your answer.
 - (a) **T F** If A, B are $n \times n$ matrices, $\det(A + B) = \det(A) + \det(B)$.
 - (b) **T F** If A, B are invertible $n \times n$ matrices, then $(AB)^{-1} = A^{-1}B^{-1}$.
 - (c) $\mathbf{T} \quad \mathbf{F} \quad (AB)^T = B^T A^T$.
 - (d) **T F** If A is a square matrix, and the only solution of the equation $A\vec{x} = \vec{0}$ is $\vec{x} = \vec{0}$, then $\det(A) \neq 0$.
 - (e) **T F** If A, B are $n \times n$ matrices, then $\det(AB) = \det(A) \det(B)$.
 - (f) **T F** If A is an $n \times n$ matrix, and $k \in \mathbb{R}$, then $\det(kA) = k^n \det(A)$.
- 2. (10 points) Multiply $\begin{bmatrix} 1 & 2 & 3 \\ 3 & 0 & 1 \\ 2 & 2 & -2 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 2 & 2 \\ 3 & 1 \end{bmatrix}$

- 3. (16 points) Find the values of h and k so that the linear system $\begin{cases} x-3hy &= 2\\ 2x+hy &= 3k \end{cases}$ has
 - (a) No solution.
 - (b) A unique solution.
 - (c) Infinitely many solutions.

4. (16 points) Find the inverse of the matrix $\begin{bmatrix} 1 & 3 & -2 \\ 2 & 5 & -4 \\ -1 & -3 & 3 \end{bmatrix}$

5. (10 points) Find the determinant of the matrix

0 3 1
0 2 0
0 0 4

6. (16 points) Use Cramer's rule to find the solution of the system
$$\begin{bmatrix} 1 & 0 & 1 \\ 2 & 1 & 0 \\ 0 & -1 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}$$

- 7. (14 points) When x and y are real numbers, we know that $(x+y)(x-y)=x^2-y^2$. However, this is not true for matrices:
 - (a) Give an example of two 2×2 matrices A and B (not necessarily different) such that $(A + B)(A B) \neq A^2 B^2$
 - (b) Find the correct expansion of (A + B)(A B).

- 8. (10 points (bonus)) Let A be an $n \times m$ matrix with n > m, and suppose that the $m \times m$ matrix $A^T A$ is invertible. Consider the matrix $B = A(A^T A)^{-1}A^T$.
 - (a) Show that $B^2 = B$.
 - (b) Show that BA = A.