[4] **1.** Find the exact value of

a) $\csc^{-1}\sqrt{2}$

Solution: Which angle between $-\pi/2$ and $\pi/2$ has a cosecant equal to $\sqrt{2}$? That is: If $\csc^{-1}\sqrt{2} = \theta$, how much is θ ?

Well, if $\csc^{-1}\sqrt{2} = \theta$ then $\csc \theta = \sqrt{2}$, and therefore, since $\csc \theta = \frac{1}{\sin \theta}$, we must have $\sin \theta = 1/\sqrt{2}$, which implies that $\theta = \pi/4$. Therefore,

$$\csc^{-1}\sqrt{2} = \frac{\pi}{4}.$$

b) $\cos^{-1}(\sqrt{3}/2)$ Solution: If $\theta = \cos^{-1}(\sqrt{3}/2)$, then $\cos \theta = \sqrt{3}/2$ and θ is between 0 and π , which implies that $\theta = \pi/6$. Therefore,

$$\cos^{-1}(\sqrt{3}/2) = \frac{\pi}{6}$$

[4] **2.** Find the derivative of the function $f(x) = x \sin^{-1}x + \sqrt{1 - x^2}$. Solution: Recall that $(\sin^{-1}x)' = \frac{1}{\sqrt{1 - x^2}}$. Therefore

$$f'(x) = \sin^{-1}x + x\frac{1}{\sqrt{1-x^2}} + \frac{-2x}{2\sqrt{1-x^2}} = \sin^{-1}x + \frac{x}{\sqrt{1-x^2}} - \frac{x}{\sqrt{1-x^2}} = \sin^{-1}x$$

 \mathbf{SO}

$$f'(x) = \sin^{-1}x.$$

[4] **3.** Simplify the expression $\sin(\tan^{-1}x)$.

Solution: Break it down: write $\theta = \tan^{-1}x$. We want to find $\sin \theta$. If $\theta = \tan^{-1}x$ then $\tan \theta = x = \frac{x}{1}$. Remember that \tan is the opposite side divided by the adjacent side. Do a picture of a right triangle with angle θ , side opposite to θ equal x and side adjacent to θ equal 1. Then the hypotenuse is $\sqrt{x^2 + 1}$, which implies that $\sin \theta = x/\sqrt{x^2 + 1}$.

Therefore

$$\sin(\tan^{-1}x) = \frac{x}{\sqrt{x^2 + 1}}$$