Directions: Do in your own paper. You can work in groups. Hand it in on Thursday.

1. Find the surface area of a cone, as in the picture below, as a function of L and r. To do this, cut along the dotted line and open it up to obtain a flat circular sector as in the figure in the left. You need to remember how to find the length of an arc and the area of a sector given the angle θ .

2. Given the previous exercise, show that the area of the truncated cone below is $\pi(r_2 + r_1)L$. To do this first write the area in terms of ℓ_1, ℓ_2, r_1, r_2 and then use similar triangles to write ℓ_1 and ℓ_2 in terms of L, r_1, r_2 .

3. Now, given a surface of revolution, given by rotating the graph of y = f(x) around the x-axis, we can slice it so that each piece is approximately a truncated cone, as in the figure below. Each truncated cone looks like the figure on the right.

We know from the last class (when we studied arc length) that

$$L_i = \Delta x \sqrt{1 + (f'(x_i^*))^2}$$

Also, when Δx is small,

(*)
$$y_i = f(x_i) \approx f(x_i^*)$$
 and $y_{i+1} = f(x_{i+1}) \approx f(x_i^*)$.

Show that the area of this cone is approximately

$$2\pi f(x_i^*)\sqrt{1+(f'(x_i^*))^2}\Delta x.$$

Write down the Riemann sum that we get by adding up all the pieces, and conclude that

(*)
$$\operatorname{Area}(S) = 2\pi \int_{a}^{b} f(x) \sqrt{1 + (f'(x))^2} dx.$$

- 4. Use the previous exercise to find that the area of a sphere of radius R is $4\pi R$.
- 5. Use the previous exercise to find that the area of the paraboloid obtained by rotating the curve $y = ax^2$ between x = 0 and x = b (of course your answer depends on a and b.
- 6. Use the previous exercise to find that the area of the surface obtained by rotating the curve $y = x^3$ between x = 0 and x = 3 (of course your answer depends on a and b.
- 7. Find the area of the infinite surface obtained by rotating the graph of y = 1/x, $x \ge 1$, around the x-axis.
- 8. Find the area of the torus obtained by rotating the circle $x^2 + (y b)^2 = a^2$ (where 0 < a < b) around the x-axis. You may need to split it in two parts since when you solve for y in terms of x, you get two different functions.

 (\star) (Of course, we only have proved that the area is approximately equal to the right hand side. To prove that it is actually equal requires a more careful treatment. After you finish the exercises, try to show rigorously that the approximation $f(x_i) \approx f(x^*)$ still gives the right value when $\Delta x \to 0$. The idea is that the error when we approximate $f(x_i)$ with $f(x_i^*)$ is equal to $|f'(\xi)(x_i - x_i^*)|$, where ξ is some number between x_i and x_i^* (using the mean value theorem). This is less than some constant number times Δx , so when we add up these errors in the Riemann sum, we will get a factor of $(\Delta x)^2$, which makes the sum of the errors converge to zero as $\Delta x \to 0$.)