
Practice Midterm 1. Calculus I - MTH31. Section D03.

Time allowed: 110 minutes Professor: Luis Fernández

NAME:

The exam has SIX questions. Point values are indicated in each problem, for a total of 100 points. Write your answers in the spaces provided. To get full credit you must show all your work. Please indicate your final answer clearly.

2. (12 points) Show that the equation $x^5 - 6x^4 - 5x^2 + 4 = 0$ has a solution c between 0 and 1. Explain clearly, and mention any theorem that you use.

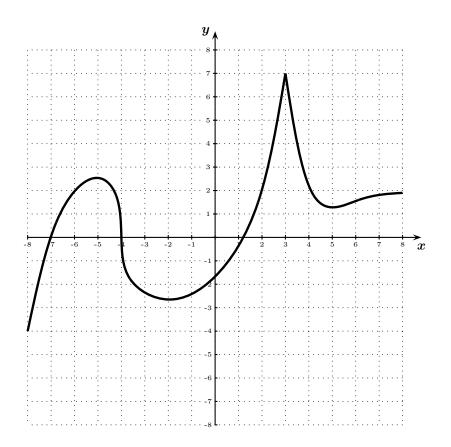
3. (24 points) Find the following limits, justifing your answer.

(a)
$$\lim_{x \to 3} \frac{x^2 - 9}{x^2 - x - 6} =$$

(b)
$$\lim_{x \to 0} \frac{x^2 + 1}{x^2} =$$

(c)
$$\lim_{t \to 3} \frac{\sqrt{t+1}-2}{t-3} =$$

(d)
$$\lim_{x \to 0} \frac{x^2 - 3x - 4}{\cos x} =$$


(e)
$$\lim_{x \to \infty} x - \sqrt{x^2 + 4x} =$$

(f)
$$\lim_{x \to -\infty} \frac{x^2 + 1}{x^2 + 4} =$$

(g)
$$\lim_{x \to 0} x \cos\left(\frac{1}{x}\right) =$$

(h)
$$\lim_{x \to \pi} \sin\left(\frac{x^2 - \pi^2}{x - \pi}\right) =$$

- **4.** (20 points) The figure below represents the graph of a function f.
 - (a) (4 points) Find the values of x where f'(x) = 0. Answer:
 - (b) (4 points) Find the values of x where f'(x) does not exist. Answer:
 - (c) (4 points) Find the approximate values of x where f'(x) = 1. Answer:
 - (d) (8 points) Sketch the graph of f'(x) in the same coordinate system.

5. (a) (8 points) Write the definition of the derivative of a function f at a point b:

$$f'(b) = \lim$$

(b) (8 points) Using the definition, find f'(0) for the function given by f(x) = x |x|.

- 6. (16 points) Given the function $g(x) = \begin{cases} x^2 1 & \text{if } x < 1 \\ 4 & \text{if } x = 1 \\ (3 x)^2 & \text{if } x > 1 \end{cases}$
 - (a) Determine whether the function g is continuous from the right, continuous from the left, or neither, at the point x = 1.

7. BONUS EXERCISE. (10 points) Attempt ONLY when you have finished all the other exercises.

By definition, a function f is *increasing* at a point a if f(x) - f(a) has the same sign as x - a for x near a. Use the definition of derivative to prove that if a function f is increasing at a then $f'(a) \ge 0$.