MATH 30 - Precalculus, Version B

First Midterm. Time allowed: 2 hours, 15 minutes. Professor Luis Fernández

NAME:

- [10] 1.
 - a) Fill in the blanks to complete the statement of the Remainder Theorem:

If the polynomial f(x) is divided by (x-a), then the remainder is (a)

b) What is the remainder when the polynomial $p(x) = x^{101} - 7x^{50} - 3x^9 - 8$ is divided by (x+1)?

$$P(-1) = (-1)^{101} - 7(-1)^{50} - 3(-1)^{9} - 8$$
$$= -1 - 7 + 3 - 8 = \boxed{-13}$$

- [10] **2**.
 - a) Fill in the blanks to complete the statement of the Factor Theorem:
 - If f(a) = 0, then (x-a) is a factor of f(x).
 - If (x a)... is a factor of f(x), then (a) = 0
 - b) Find a polynomial of degree 4 with zeros at -2, 3, and -5.

[NOTE: leave your polynomial factored; please do not expand it.]

[10] 3. Divide using long division and write the answer as $D = d \cdot q + r$, where D is the dividend, d is the divisor, q is the quotient and r is the remainder.

[10] 4. List all the possible rational roots of the polynomial $5x^6 - 14x^4 + 6x^2 - 9$. NOTE: You are only asked to list them, NOT to factor the polynomial.

Factors of
$$-9 \rightarrow 1,3,9$$

Factors of $5 \rightarrow 1,5$
 $\pm \{1,3,9,\frac{1}{5},\frac{3}{5},\frac{9}{5}\}$

- [12] 5.
 - a) Find the slope and equation of the line passing through the points (1,2) and (3,-3),

$$m = \frac{-3 - 2}{3 - 1} = \frac{-5}{2}$$

Equation:
$$y-2=-\frac{5}{2}(x-1)$$

b) Find the equation of the line perpendicular to the line $y = \frac{2x}{3} + 4$ and passing through the point (1, 2).

$$9-2=-\frac{3}{2}(x-1)$$

- [12] **6.** Consider the line given by the equation 2x + 3y = 6.
 - a) Find its slope and y-intercept.

Solve
$$f \sim y$$
:
 $2 \times +3y = 6 \Rightarrow 3y = -2 \times +6$
 $\Rightarrow y = -\frac{2}{3} \times +2$
 $y = -\frac{2}{3} \times +2$
 $y = -\frac{2}{3} \times +2$

b) Graph the line in the coordinate axes below.

- [12] 7. For the quadratic function $f(x) = -2(x-1)^2 + 2$,
 - a) Find the vertex.
 - b) Find the x-intercepts, if any.

$$-2(x-1)^{2}+2=0=3-2(x-1)^{2}=-2=3(x-1)^{2}=1$$

$$=3(x-1)=\pm 1=3x=1\pm 1$$

$$=3(x-1)=\pm 1=3x=1\pm 1$$

$$=3(x-1)^{2}=-2=3(x-1)^{2}=1$$

$$=3(x-1)^{2}=-2=3(x-1)^{2}=1$$

$$=3(x-1)^{2}=-2=3(x-1)^{2}=1$$

$$=3(x-1)^{2}=-2=3(x-1)^{2}=1$$

$$=3(x-1)^{2}=-2=3(x-1)^{2}=1$$

$$=3(x-1)^{2}=-2=3(x-1)^{2}=1$$

$$=3(x-1)^{2}=1$$

c) Find the y-intercepts.

$$f(0) = -2((0)-1)^2+2 = -2(-1)^2+2 = -2+2 = 0$$

d) Determine whether the parabola opens up or down. Sketch the graph on the coordinate axes provided.

Opus down because $\alpha = -2 < 0$.

[12] 8. Find all the solutions of the equation $x^3 - 5x^2 + 5x - 1 = 0$ [NOTE: one of the solutions is rational, so it can be found using synthetic division. The other two are irrational; to find them you need to use the quadratic formula or complete the square.]

$$\frac{1}{1 - 4} = \frac{1}{0} \Rightarrow (x - 1)$$

= Solve
$$(x-1)(x^2-4x+1)=0$$

 $x-1=0$ $x^2-4x+1=0$
 $x=1$ Use quadratic formle $x=1$, $y=1$.

$$-1=0 \qquad \qquad \times^2 - 4 \times +1 = 0$$

$$x = \frac{-(-4) \pm \sqrt{(-4)^2 - 4(1)(1)}}{2(1)}$$

$$= 4 \pm \sqrt{16-4}$$

$$= \frac{4 \pm \sqrt{12}}{2} = \frac{4 \pm 2\sqrt{3}}{2} = 2 \pm \sqrt{3}$$

$$x = 1$$
, $x = 2 + \sqrt{3}$, $x = 2 - \sqrt{3}$

[12] **9.** Factor completely the polynomial $f(x) = x^4 + 4x^3 - 6x^2 - 4x + 5$.

- [12] 10. The polynomial $f(x) = x^3 3x 2$ can be factored as $f(x) = (x+1)^2(x-2)$.
 - a) Find the end behavior of f.

Degree 3, a=1>0 => //

b) Find the x-intercepts of f and their multiplicity, and the local behavior at the intercepts.

 $f(x)=0 \Rightarrow (x+1)^{2}(x-2)=0$ x=-1 with multiplicity 2 $x=2 \quad \text{''}$

c) Find the y-intercept of f.

f(0) =-2

d) Sketch the graph of f in the axes provided.