MATH 30 - Precalculus, Version A

First Midterm. Time allowed: 2 hours, 15 minutes. Professor Luis Fernández

NAME: SOLUTION

- [10] 1.
 - a) Fill in the blanks to complete the statement of the Remainder Theorem:

b) What is the remainder when the polynomial $p(x) = x^{100} + 5x^{50} - 6x^{23} + 5$ is divided by (x+1)?

$$= 1 + 2 + 6 + 2 = 11$$

$$= (-1)_{100} + 2(-1)_{20} - 6(-1)_{53} + 2$$

- [10] 2.
 - a) Fill in the blanks to complete the statement of the Factor Theorem:
 - If f(x) = 0, then f(x) is a factor of f(x).
 - If (x, -x) is a factor of f(x), then (x, -x) = 0
 - b) Find a polynomial of degree 4 with zeros at -4, 5, and -6.

[NOTE: leave your polynomial factored; please do not expand it.]

[10] 3. Divide using long division and write the answer as $D = d \cdot q + r$, where D is the dividend, d is the divisor, q is the quotient and r is the remainder.

$$6x^{3}-2x^{2}-24x-11=(2x+2)(3x^{2}-6x-6)+1$$

[10] 4. List all the possible rational roots of the polynomial $3x^6 - 3x^2 - 15x + 4$. NOTE: You are only asked to list them, NOT to factor the polynomial.

P where prisa factor of 4 -> 1,2,4

$$\frac{9}{3}$$
 $\frac{1}{3}$
 $\frac{1}{3}$
 $\frac{1}{3}$
 $\frac{1}{3}$
 $\frac{1}{3}$

- [12] 5.
 - a) Find the slope and equation of the line passing through the points (1, 2) and (3, -3),

$$m = \frac{-3-2}{3-1} = -\frac{5}{2}$$
Equation: $y-2 = -\frac{5}{2}(x-1)$

$$y+3 = -\frac{5}{2}(x-3)$$

b) Find the equation of the line perpendicular to the line $y = \frac{2x}{3} + 4$ and passing through the point (1, 2).

- [12] 6. Consider the line given by the equation 2x + 3y = 6.
 - a) Find its slope and y-intercept.

Solve for q:
$$2x+3y=6$$

 $3y=-2x+6$
 $y=-\frac{2}{3}x+2$

b) Graph the line in the coordinate axes below.

[12] 7. For the quadratic function
$$f(x) = -2(x-2)^2 + 2$$
,

b) Find the x-intercepts, if any.

$$-2(x-2)^{2}+2=0 \implies -2(x-2)^{2}=-2$$

$$\implies (x-2)^{2}=1$$

$$\implies x-2=\pm 1 \implies x=2\pm 1$$

$$x: -4expt are 1 and 3.$$

c) Find the y-intercepts.

$$f(0) = -2((0)-2)^{2}+2 = -2\cdot(-2)^{2}+2$$

= -2 (4) +2 = -8+2
= -6

d) Determine whether the parabola opens up or down. Sketch the graph on the coordinate axes provided.

[12] 8. Find all the solutions of the equation $x^3 - 5x^2 + 6x - 2 = 0$.

[NOTE: one of the solutions is rational, so it can be found using synthetic division. The other two are irrational; to find them you need to use the quadratic formula or complete the square.]

Use synthetic division ho factor (1x3-5x2+6x62)

Cadidate: Factors of (2)

Factors of 1

= 1,-1,2,-2.

 $\frac{1}{1}$ $\frac{1}{-4}$ $\frac{2}{2}$ $\frac{1}{0}$

 $X = \frac{-(-4) \pm \sqrt{(-4)^2 - 4(1)(2)}}{2(1)}$

= 4±116-8

 $=\frac{4\pm \sqrt{8}}{2}=\frac{4\pm 2\sqrt{2}}{2}=2\pm \sqrt{2}$

Salution: X=1, X=2+12, X=2-12

[12] 9. Factor completely the polynomial $f(x) = x^4 + 2x^3 - 4x^2 - 2x + 3$.

$$\frac{1}{1} \frac{1}{1} \frac{2}{3} \frac{-4}{-2} \frac{3}{3} \frac{-1}{-3} \frac{-3}{0} \frac{(x-1)}{1} \frac{1}{4} \frac{3}{3} \frac{1}{0} \frac{1}{4} \frac{1}{3} \frac{5}{0} \frac{1}{1} \frac{1}{5} \frac{1}{8} \frac{8}{10} \frac{1}{3} \frac{$$

- [12] 10. The polynomial $f(x) = x^3 3x + 2$ can be factored as $f(x) = (x-1)^2(x+2)$.
 - a) Find the end behavior of f.

a=1, degree 3 ->

b) Find the x-intercepts of f and their multiplicity, and the local behavior at the intercepts.

c) Find the y-intercept of f.

\$(0)=2

d) Sketch the graph of f in the axes provided.