MATH 30 - Precalculus, Version B

First Midterm. Time allowed: 2 hours, 15 minutes. Professor Luis Fernández

NAME: SOLUTION

[6] 1. Carefully write down the statement of the Remainder Theorem:

If f(x) is divided by (x-a), the remaindr

[6] 2. Suppose that we divide the polynomial $p(x) = x^{101} - 7x^{50} - 3x^9 - 8$ by (x+1). What remainder do we get?

 $p(-1) = (-1)^{10} - 7(-1)^{50} - 3(-1)^{9} - 8$ $= -1 - 7 + 3 - 8 = \boxed{13}$

[10] **3.** Divide using long division and write the answer as $D = d \cdot q + r$, where D is the dividend, d is the divisor, q is the quotient and r is the remainder.

 $\frac{6x^{3} + 11x^{2} - 2x - 12}{3x + 4}$ $2x^{2} + x - 2$ 3x + 4 $\frac{6}{x^{3} + 11} x^{2} - 2x - 12$ $\frac{+ 3 \times - 2x}{+ 3 \times 2 + 4}$ $\frac{- 6 \times - 12}{+ 3 \times 2 \times 4 + 8}$ $\frac{- 6 \times - 12}{+ 3 \times 4 \times 4 \times 4 \times 4}$ $\frac{- 6 \times - 12}{+ 3 \times 4 \times 4 \times 4 \times 4}$ $\frac{- 6 \times - 12}{+ 3 \times 4 \times 4 \times 4 \times 4}$ $\frac{- 4}{4 \times 4 \times 4 \times 4 \times 4}$ $\frac{6 \times ^{3} + 11 \times ^{2} - 2 \times - 12}{+ 3 \times 4 \times 4 \times 4 \times 4}$ $\frac{6 \times ^{3} + 11 \times ^{2} - 2 \times - 12}{+ 3 \times 4 \times 4 \times 4}$ $\frac{6 \times ^{3} + 11 \times ^{2} - 2 \times - 12}{+ 3 \times 4 \times 4 \times 4}$

[10] **4.** List all the possible rational roots of the polynomial $5x^6 - 14x^4 + 6x^2 - 9$. NOTE: You are only asked to list them, NOT to factor the polynomial.

They have the form $\frac{1}{9}$ where $\frac{1}{3}$ p is a factor of $\frac{9}{3}$ 1,39 $\frac{1}{3}$ $\frac{3}{5}$ $\frac{9}{5}$ $\frac{1}{5}$ $\frac{3}{5}$ $\frac{9}{5}$ $\frac{1}{5}$ $\frac{3}{5}$ $\frac{9}{5}$ $\frac{1}{5}$

[12] 5. Find the equation of the line perpendicular to the line $y = \frac{2x}{3} + 4$ and passing through the point (1,2).

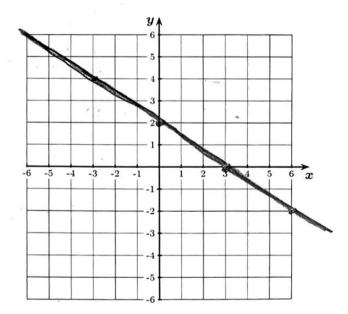
The slope of $y = \frac{2x}{3} + 4$ is $\frac{2}{3}$. The slope of the perpendicular is $-\frac{3}{2}$. Using the point slope form, the equation we want is $\frac{1}{4-2=-\frac{3}{2}(x-1)}$ (or $y = -\frac{3}{2}x + \frac{7}{2}$)

- [12] **6.** Consider the line given by the equation 2x + 3y = 6.
 - a) Find its slope and y-intercept.

Solve for y:
$$2x+3y=6$$

=> $3y=-2x+6$
=> $y=-\frac{2}{3}x+2$
Sope: $-\frac{2}{3}$
y-intrapt: 2

b) Graph the line in the coordinate axes below.



- [12] 7. For the quadratic function $f(x) = -2(x-1)^2 + 2$,
 - Verlex: (1, 2)
 - b) Find the x-intercepts, if any.

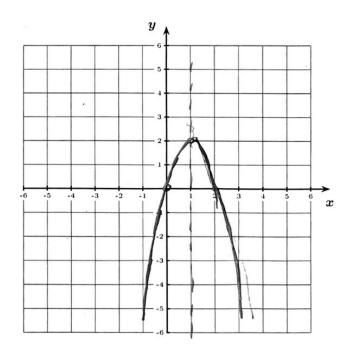
Solve
$$-2(x-1)^2+2=0$$

 $-2(x-1)^2=-2$
 $(x-1)^2=1$
 $x-1=\pm 1$
 $x=0$

c) Find the y-intercepts.

$$f(0) = -2(0-1)^2 + 2 = -2(-1)^2 + 2 = -2 + 2 = 0$$

d) Determine whether the parabola opens up or down. Sketch the graph on the coordinate axes provided.



[12] 8. Find all the solutions of the equation $x^3 - 5x^2 + 5x - 1 = 0$.

[NOTE: one of the solutions is rational, so it can be found using synthetic division. The other two are irrational; to find them you need to use the quadratic formula or complete the square.]

So we need to solve
$$(x-1)(x^2-4x+1)=0 \qquad (-4)^2-4(1)(1)$$

$$x-1=0 \qquad x^2-4x+1=0 \qquad \sqrt{12}=\sqrt{4}$$

$$x=1 \qquad x=-(-4)\pm\sqrt{(-4)^2-4(1)(1)} \qquad =2\sqrt{3}$$

$$x=4\pm2\sqrt{3}=4+2\sqrt{3}$$

$$= \frac{4 \pm 2\sqrt{3}}{2} = \frac{4 \pm 2\sqrt{3}}{2}$$

$$= 2 \pm \sqrt{3}$$
Solutions:

$$x = 1$$
, $x = 2 + \sqrt{3}$, $x = 2 - \sqrt{3}$

[12] **9.** Factor completely the polynomial $f(x) = x^4 + 4x^3 - 6x^2 - 4x + 5$.

Possible zeros:
$$\frac{1}{9}$$
 with pfactor of $\frac{1}{5} = \frac{1}{5}$.

Possible teros: $\frac{1}{5} = \frac{1}{5} = \frac{1}{5}$.

Tryl: $\frac{1}{5} = \frac{1}{5} = \frac{1}{5} = \frac{1}{5}$.

Tryl: $\frac{1}{5} = \frac{1}{5} = \frac{1}{5} = \frac{1}{5}$.

Tryl: $\frac{1}{5} = \frac{1}{5} = \frac{1}{5} = \frac{1}{5}$.

Tryl: $\frac{1}{5} = \frac{1}{5} = \frac{1}{5} = \frac{1}{5}$.

Tryl: $\frac{1}{5} = \frac{1}{5} = \frac{1}{5} = \frac{1}{5}$.

Tryl: $\frac{1}{5} = \frac{1}{5} = \frac{1}{5$

- [12] **10.** The polynomial $f(x) = x^3 3x 2$ can be factored as $f(x) = (x+1)^2(x-2)$.
 - a) Find the end behavior of f.

Degree 3, leading welficiant 1

b) Find the x-intercepts of f and their multiplicity, and the local behavior at the intercepts.

x-intercepts of $f(x)=(x+1)^2(x-2)$:

-1 with multiplicity $Z \rightarrow Q$ or Q

c) Find the y-intercept of f.

£(0)=-2

d) Sketch the graph of f in the axes provided.