MATH 30 - Precalculus, Version B

Second Midterm. Time allowed: 2 hours, 15 minutes. Professor Luis Fernández
NAME: \qquad

Instructions:

- Write all your answers in the space provided, or attach sheets if you need more space.
- SHOW ALL YOUR WORK. Solutions without work shown will receive no credit.
- Non-graphing calculators are allowed. No notes or books allowed.
- The exam has 8 exercises. The points of each exercise are written on the left.
- The exam has a total of 110 points, with 10 extra credit points.
[18] 1. Write the exact value (NO decimals) of
a) $\log _{4} 64=$
b) $\log _{6} \sqrt[3]{6}=$
c) $\log _{123} 123^{7}=$
d) $2013^{\log _{2013} 6}=$
e) $\log _{9} \frac{1}{27}=\quad$ f) $\log _{16} 8=$
[6] 2. Convert the following from exponential form to logarithmic form.
a) $e^{x}=2$
b) $10^{x-2}=7$
[6] 3. Convert the following from logarithmic form to exponential form.
a) $\operatorname{Ln} y=3$
b) $\log _{3}(y+6)=x+4$
[8] 4. Condense the following logarithmic expressions (that is, write them using only one logarithm in the front).
a) $5 \log x+2 \log y$
b) $7 \log a+2 \log b-7 \log c$
c) $\frac{1}{5}\left(2 \log x-\frac{1}{2} \log y+\frac{2}{3} \log z\right)$
d) $\frac{\log x}{5}-\frac{4}{7} \log y$
[8] 5. Expand the following logarithmic expressions (that is, write them using addition and subtraction of logarithms).
a) $\log _{5}(4 y z)$
b) $\log _{7}\left(x^{2} y^{4}\right)$
c) $\log _{9}\left(\frac{x^{14}}{4}\right)$
d) $\log \left(x^{4} y^{3}\right)^{5}$
[4] 6. Write the following logarithms in the indicated base.
a) $\log _{5} 7$, in base 6 .
b) $\log _{2} 9$, in base 10 .
[40] 7. Solve the following equations. If the answer is not an exact numbers, leave it expressed as a logarithm.
a) $7^{x-2}=49$
b) $4^{x-3}=8^{2 x+1}$
c) $\log _{2}(x)-4=\log _{2} 3$
d) $\log _{3}(x-4)+\log _{3}(x-2)=\log _{3}(2 x-7)$
[20] 8. For the rational function $f(x)=\frac{x^{2}+2 x-3}{x^{2}-2 x-3}$,
a) Factor numerator and denominator and simplify if possible.
b) Find the x intercepts of the graph of $y=f(x)$, if they exist.
c) Find the y intercepts of the graph of $y=f(x)$, if they exist.
d) Find any vertical asymptotes.
e) Find any horizontal asymptotes.
f) Use the information above to sketch a graph of $y=f(x)$.

