MATH 30 - Precalculus, Version B

Second Midterm. Time allowed: 2 hours, 15 minutes. Professor Luis Fernández

NAME: ____

Instructions:

- Write all your answers in the space provided, or attach sheets if you need more space.
- SHOW ALL YOUR WORK. Solutions without work shown will receive no credit.
- Non-graphing calculators are allowed. No notes or books allowed.
- The exam has 8 exercises. The points of each exercise are written on the left.
- The exam has a total of 110 points, with 10 extra credit points.

[18] **1.** Write the exact value (NO decimals) of

a) $\log_4 64 =$

b) $\log_6 \sqrt[3]{6} =$

c) $\log_{123} 123^7 =$ d) $2013^{\log_{2013} 6} =$

e) $\log_9 \frac{1}{27} =$ f) $\log_{16} 8 =$

[6] 2. Convert the following from exponential form to logarithmic form.
a) e^x = 2
b) 10^{x-2} = 7

[6] **3.** Convert the following from logarithmic form to exponential form.

a) $\ln y = 3$ b) $\log_3(y+6) = x+4$

[8] 4. Condense the following logarithmic expressions (that is, write them using only one logarithm in the front).

a)
$$5\log x + 2\log y$$

b) $7\log a + 2\log b - 7\log a$

c)
$$\frac{1}{5}(2\log x - \frac{1}{2}\log y + \frac{2}{3}\log z)$$
 d) $\frac{\log x}{5} - \frac{4}{7}\log y$

[8] 5. Expand the following logarithmic expressions (that is, write them using addition and subtraction of logarithms).
 a) log₅ (4yz)
 b) log₇ (x²y⁴)

c)
$$\log_9\left(\frac{x^{14}}{4}\right)$$
 d) $\log(x^4y^3)^5$

[4] **6.** Write the following logarithms in the indicated base.

a) $\log_5 7$, in base 6.

b) $\log_2 9$, in base 10.

[40] 7. Solve the following equations. If the answer is not an exact numbers, leave it expressed as a logarithm.

a) $7^{x-2} = 49$

b) $4^{x-3} = 8^{2x+1}$

c) $\log_2(x) - 4 = \log_2 3$

d) $\log_3(x-4) + \log_3(x-2) = \log_3(2x-7)$

[20] 8. For the rational function $f(x) = \frac{x^2 + 2x - 3}{x^2 - 2x - 3}$,

- a) Factor numerator and denominator and simplify if possible.
- **b)** Find the x intercepts of the graph of y = f(x), if they exist.
- c) Find the y intercepts of the graph of y = f(x), if they exist.
- d) Find any vertical asymptotes.
- e) Find any horizontal asymptotes.

