MATH 30 - Precalculus, Version B

First Midterm. Time allowed: 2 hours, 15 minutes. Professor Luis Fernández
NAME: \qquad
[10] 1.
a) Fill in the blanks to complete the statement of the Remainder Theorem:

If the polynomial $f(x)$ is divided by \qquad then the remainder is \qquad
b) What is the remainder when the polynomial $p(x)=x^{101}-7 x^{50}-3 x^{9}-8$ is divided by $(x+1)$?
[10] 2.
a) Fill in the blanks to complete the statement of the Factor Theorem:

- If \qquad then \qquad is a factor of $f(x)$.
- If \qquad is a factor of $f(x)$, then \qquad
b) Find a polynomial of degree $\mathbf{4}$ with zeros at $-2,3$, and -5 .
[NOTE: leave your polynomial factored; please do not expand it.]
[10] 3. Divide using long division and write the answer as $D=d \cdot q+r$, where D is the dividend, d is the divisor, q is the quotient and r is the remainder.
$\frac{6 x^{3}+11 x^{2}-2 x-12}{3 x+4}$
[10] 4. List all the possible rational roots of the polynomial $5 x^{6}-14 x^{4}+6 x^{2}-9$.
NOTE: You are only asked to list them, NOT to factor the polynomial.
[12] 5.
a) Find the slope and equation of the line passing through the points $(1,2)$ and $(3,-3)$,
b) Find the equation of the line perpendicular to the line $y=\frac{2 x}{3}+4$ and passing through the point $(1,2)$.
[12] 6. Consider the line given by the equation $2 x+3 y=6$.
a) Find its slope and y-intercept.
b) Graph the line in the coordinate axes below.

[12] 7. For the quadratic function $f(x)=-2(x-1)^{2}+2$,
a) Find the vertex.
b) Find the x-intercepts, if any.
c) Find the y-intercepts.
d) Determine whether the parabola opens up or down. Sketch the graph on the coordinate axes provided.

[12] 8. Find all the solutions of the equation $x^{3}-5 x^{2}+5 x-1=0$.
[NOTE: one of the solutions is rational, so it can be found using synthetic division. The other two are irrational; to find them you need to use the quadratic formula or complete the square.]
[12] 9. Factor completely the polynomial $f(x)=x^{4}+4 x^{3}-6 x^{2}-4 x+5$.
[12] 10. The polynomial $f(x)=x^{3}-3 x-2$ can be factored as $f(x)=(x+1)^{2}(x-2)$.
a) Find the end behavior of f.
b) Find the x-intercepts of f and their multiplicity, and the local behavior at the intercepts.
c) Find the y-intercept of f.
d) Sketch the graph of f in the axes provided.

