SOLUTION

SOLUTIONS. Note: only the solution to the even numbered exercises is given. The solution of the odd numbered ones is in the back of the textbook.

- 1. Do exercises 77 and 80 from Section 1.2 in the book. 80: a. Domain: $(-\infty, \infty)$. b. Range: $[0, \infty)$. c. *x*-intercept: -1. d. *y*-intercept: 1. e. f(-4) = 3; f(3) = 4.
- 2. Do exercises 5, 6, 47 and 50 from Section 1.3 in the book.

6: a. Increasing in [-3, 2]. b. Never decreasing. c. Never constant. 50: a.

b. Range: the values 4 and -4 (in set notation, $\{-4, 4\}$).

3. Do exercises 66, 70 and 80 from Section 1.6 in the book. 66: $h(x) = -2(x+2)^2 + 1$. (Graph x^2 , move it 2 left, stretch vertically by 2, reflect w.r.t. x-axis, then 1 up.) 70: $h(x) = \sqrt{x+1}$. (Graph \sqrt{x} , move it 1 left.) 80: $h(x) = 2\sqrt{x+1} - 1$. (Graph \sqrt{x} , move it 1 left, stretch vertically by 2, move it 1 down.)

4. Do exercises 67, 68 and 70 from Section 1.7 in the book.

+6

68.
$$f(x) = \frac{x}{x+5}, g(x) = \frac{6}{x}$$
.
a. $(f \circ g)(x) = f(g(x)) = \frac{\frac{6}{x}}{\frac{1}{x+5}} = \frac{6}{5x}$

b. To find the domain of $f \circ g$, exclude those values of x not in the domain of g and those values of x such that g(x) is not in the domain of f.

Domain of g: every number excluding 0. Domain of f: every number excluding -5. For g(x) not to be in the domain of f we solve g(x) = -5, so $\frac{6}{x} = -5$, so $x = -\frac{6}{5}$. Therefore the domain of $f \circ g$ is $(-\infty, -\frac{6}{5}) \cup (-\frac{6}{5}, 0) \cup (0, \infty)$.

70.
$$f(x) = \sqrt{x}, g(x) = x - 3.$$

a. $(f \circ q)(x) = f(q(x)) = \sqrt{x - 3}$

b. To find the domain of $f \circ g$, exclude those values of x not in the domain of g and those values of x such that q(x) is not in the domain of f.

Domain of g: every number (nothing excluded). Domain of f: every nonnegative number, so exclude all the values for which g(x) < 0, so x - 3 < 0 so x < 3. Therefore the domain of $f \circ g$ is $[3, \infty)$.

5. Do exercise 26 from Section 2.2 in the book.

26. $f(x) = 1 - (x - 3)^2$. Vertex: (3,1). Axis of symmetry: x = 3. x-intercepts: 4 and 2. y-intercepts: -8. Domain: $(-\infty, \infty)$. Range $(-\infty, 1]$.

6. Do exercises 41, 47, 52 from Section 2.3 in the book.

52. $f(x) = 6x - x^3 - x^5$. **a.** End behaviour: like $-x^5$ (up left and down right). **b.** x-intercepts: factor $f(x) = -x(x^4 + x^2 - 6) = -x(x^2 - 2)(x^2 + 3) = -x(x + \sqrt{2})(x - \sqrt{2})(x^2 + 3)$, so they are $0, \sqrt{2}$ and $-\sqrt{2}$ all with multiplicity 1. **c.** y-intercept: f(0) = 0. **d.** $f(-x) = 6(-x) - (-x)^3 - (-x)^5 = -6x + x^3 + x^5 = -(6x - x^3 - x^5) = -f(x)$, so f is odd. **e.**

7. Do exercises 11, 13, 33 and 34 from Section 2.4 in the book.
34. f(3) = -27.

8. Do exercises 2, 22, 23 and 26 from Section 2.5 in the book.

2. Possible rational roots of $x^3 + 3x^2 - 6x - 8$ are: $\pm 1, \pm 2, \pm 4, \pm 8$.

22. $2x^3 - 5x^2 - 6x + 4 = 0$. **a.** Possible rational roots are: $\pm 1, \pm 2, \pm 4, \pm \frac{1}{2}$. **b.** $\frac{1}{2}$ works, and $2x^3 - 5x^2 - 6x + 4 = 2(x - \frac{1}{2})(x^2 - 2x - 4) = 0$. So one solution is $x = \frac{1}{2}$. **c.** We find the other two by solving $(x^2 - 2x - 4) = 0$ using the quadratic formula. This gives $x = 1 + \sqrt{5}$ and $x = 1 - \sqrt{5}$.

26. If 2*i* is a zero, -2i must also be a zero, and *f* has degree 3, so f(x) = A(x-4)(x-2i)(x+2i). Now f(-1) = 50, so f(-1) = A(-1-4)(-1-2i)(-1+2i) = -25A = 50, so A = -2 and f(x) = -2(x-4)(x-2i)(x+2i).

9. Do exercises 51, 53, and 64 from Section 2.6 in the book.

64. $f(x) = \frac{x-4}{x^2-x-6}$. *y*-intercept: $f(0) = \frac{2}{3}$. *x*-intercept: x = 4.

f cannot be even or odd since the x-intercepts are not symmetric about 0 (4 is an x-intercept but -4 is not). Horizontal Asymptotes: $f(x) \approx \frac{x}{x^2} = \frac{1}{x}$, so f has a horizontal asymptote at y = 0.

Vertical Asymptotes: The denominator of f(x) is (x-3)(x+2), so f has vertical asymptotes at 3 and -2.

10. Do exercises 11, 16, 53 and 56 from Section 2.7 in the book.

16. $3x^2 + 16x < -5 \Rightarrow 3x^2 + 16x + 5 < 0 \Rightarrow (x+5)(3x+1) < 0$. Do a table of values. The solution is $(-5, -\frac{1}{3})$. **56.** $\frac{x}{x-1} > 2 \Rightarrow \frac{x}{x-1} - 2 > 0 \Rightarrow \frac{-x+2}{x-1} > 0$. Do a table of values. The solution is (1, 2).

11. Do exercises 36 and 44 from Section 3.1 in the book.
36. f(x) = e^{x+1}. Move the graph of e^x one unit to the left.

12. Do exercises 30, 32, 34, 76, 78, 86 and 90 from Section 3.2 in the book.

30. $\log_6 \sqrt{6} = \frac{1}{2}$. **32.** $\log_3 \frac{1}{\sqrt{3}} = -\frac{1}{2}$. **34.** $\log_{81} 9 = \frac{1}{2}$.

76. Find the domain of $f(x) = \log_5(x+6)$. For something to be in the domain of \log_b , that something has to be positive. Therefore we need x + 6 > 0, so x > -6, so the domain of f is $(-6, \infty)$.

78. Find the domain of $f(x) = \log(7 - x)$. Again, for something to be in the domain of \log_b , that something has to be positive. Therefore we need 7 - x > 0, so x < 7, so the domain of f is $(-\infty, 7)$.

13. Do exercises 40, 58, 62, 72 and 74 from Section 3.3 in the book. 40. $\log \left[\frac{100x^3\sqrt[3]{5-x}}{3(x+7)^2}\right] = \log 100 + 3\log x + \frac{1}{3}\log(5-x) - \log 3 - 2\log(x+7) = 2 + 3\log x + \frac{1}{3}\log(5-x) - \log 3 - 2\log(x+7)$ 58. $2\ln x - \frac{1}{2}\ln y = \ln \left(\frac{x^2}{\sqrt{y}}\right)$. 62. $4\ln x + 7\ln y - 3\ln z = \ln \left(\frac{x^4y^7}{z^3}\right)$. 72. $\log_6 17 = \frac{\log 17}{\log 6} = 1.5813$. 74. $\log_{16} 57.2 = \frac{\log 57.2}{\log 16} = 1.4595$.

14. Do exercises 6, 8, 68 and 70 from Section 3.4 in the book. 6. $3^{2x+1} = 27 \Rightarrow 3^{2x+1} = 3^3 \Rightarrow 2x + 1 = 3 \Rightarrow x = 1$. The solution is x = 1. 8. $5^{3x-1} = 125 \Rightarrow 5^{3x-1} = 5^3 \Rightarrow 3x - 1 = 3 \Rightarrow x = \frac{4}{3}$. The solution is $x = \frac{4}{3}$. 68. $\log_2(x-1) + \log_2(x+1) = 3 \Rightarrow \log_2(x-1)(x+1) = 3 \Rightarrow (x-1)(x+1) = 8 \Rightarrow x^2 - 1 = 8 \Rightarrow x^2 = 9 \Rightarrow x = \pm 3$. However, x = -3 does not work because $\log_2(-3-1) = \log_2(-4)$ is not defined. So the only solution is x = 3. 70. $\log_4(x+2) - \log_4(x-1) = 1 \Rightarrow \log_4\frac{x+2}{x-1} = 1 \Rightarrow \frac{x+2}{x-1} = 4 \Rightarrow \frac{x+2}{x-1} - 4 = 0 \Rightarrow \frac{-3x+6}{x-1} = 0 \Rightarrow \frac{-3(x-2)}{x-1} = 0$, so

70. $\log_4(x+2) - \log_4(x-1) = 1 \Rightarrow \log_4 \frac{x+2}{x-1} = 1 \Rightarrow \frac{x+2}{x-1} = 4 \Rightarrow \frac{x+2}{x-1} - 4 = 0 \Rightarrow \frac{-3x+6}{x-1} = 0 \Rightarrow \frac{-3(x-2)}{x-1} = 0$, so x = 2. Check: $\log_4(2+2) - \log_4(2-1) = \log_4 4 - \log_4 1 = 1 - 0 = 1$.

15. Do exercises 25, 28, 40, 48 from Section 4.2 in the book. 28. If $\sin t = \frac{2}{3}$ and $\cos t = \frac{\sqrt{5}}{3}$ then $\tan t = \frac{\sin t}{\cos t} = \frac{2}{\sqrt{5}}$, $\sec t = \frac{1}{\cos t} = \frac{3}{\sqrt{5}}$, $\csc t = \frac{1}{\sin t} = \frac{3}{2}$, $\cot t = \frac{\cos t}{\sin t} = \frac{\sqrt{5}}{2}$ 40. $\csc \frac{9\pi}{4} = \frac{1}{\sin \frac{9\pi}{4}} = \frac{1}{\sin \frac{\pi}{4}} = \frac{1}{\frac{\sqrt{2}}{2}} = \frac{2}{\sqrt{2}} = \sqrt{2}$. 48. $-\cot(\frac{\pi}{4} + 17\pi) = -\cot(\frac{\pi}{4} + \pi) = -\cot(\frac{5\pi}{4}) = -\frac{\cos(\frac{5\pi}{4})}{\sin(\frac{5\pi}{4})} = -\frac{-\frac{\sqrt{2}}{2}}{-\frac{\sqrt{2}}{2}} = -1$ (the first equality comes from the fact that $(\frac{\pi}{4} + 17\pi)$ and $(\frac{\pi}{4} + \pi)$ are coterminal angles).

16. Do exercises 10, 12, 14, 44 and 54 from Section 4.3 in the book.

10. $\tan 30^{\circ} = \frac{1}{\sqrt{3}}$. 12. $\csc 45^{\circ} = \frac{\sqrt{2}}{1} = \sqrt{2}$. 14. $\cot \frac{\pi}{3} = \cot 60^{\circ} = \frac{1}{\sqrt{3}}$. 44. $\frac{1}{\cot \frac{\pi}{4}} - \frac{2}{\csc \frac{\pi}{6}} = \frac{\sin \frac{\pi}{4}}{\cos \frac{\pi}{4}} - 2\sin \frac{\pi}{6} = \frac{\frac{\sqrt{2}}{\sqrt{2}}}{\frac{\sqrt{2}}{2}} - 2 \cdot \frac{1}{2} = 1 - 1 = 0$. 54. By looking at the picture, $\tan 40^{\circ} = \frac{h}{35}$, so $h = 35 \tan 40^{\circ} \approx 29 ft$.

17. Do exercises 25, 26, 68, 72 and 74 from Section 4.4 in the book.

26. Suppose $\cos \theta = \frac{4}{5}$. Draw a right triangle whose leg adjacent to θ has length 4 and whose hypotenuse has length 5. Then the leg opposite to θ has length $\sqrt{5^2 - 4^2} = \sqrt{25 - 16} = \sqrt{9} = 3$ by the Pythagorean theorem. So $\sin \theta = \pm \frac{3}{5}$. Since θ is in quadrant IV, $\sin \theta$ is negative, so $\sin \theta = -\frac{3}{5}$ and from here $\tan \theta = \frac{\sin \theta}{\cos \theta} = -\frac{3}{4}$, $\sec \theta = \frac{1}{\cos \theta} = \frac{5}{4}$, $\csc \theta = \frac{1}{\sin \theta} = -\frac{5}{3}$, and $\cot \theta = \frac{\cos \theta}{\sin \theta} = -\frac{4}{3}$. 68. $\cos \frac{3\pi}{4} = -\frac{\sqrt{2}}{2}$. 72. $\tan \frac{9\pi}{2} = \tan \frac{8\pi + \pi}{2} = \tan \left(\frac{8\pi}{2} + \frac{\pi}{2}\right) = \tan \left(4\pi + \frac{\pi}{2}\right) = \tan \frac{\pi}{2}$, which is undefined. 74. $\sin(-225^\circ) = \sin(-225^\circ + 360^\circ) = \sin(135^\circ) = \sqrt{22}$.

18. Do exercises **17**, **20**, **24** and **26** from Section **4.5** in the book. **20.** $y = \sin(2x - \frac{\pi}{2})$. Amplitude = 1, phase shift = $\frac{\pi}{4}$, period = π .

24. $y = \frac{1}{2}\sin(x+\pi)$. Amplitude $=\frac{1}{2}$, phase shift $= -\pi$, period $= 2\pi$.

26. $y = -3\sin\left(2x + \frac{\pi}{2}\right)$. Amplitude = 3, phase shift = $-\frac{\pi}{4}$, period = π .

