SOLUTION

SOLUTIONS. Note: only the solution to the even numbered exercises is given. The solution of the odd numbered ones is in the back of the textbook.

1. Do exercises $\mathbf{7 7}$ and $\mathbf{8 0}$ from Section $\mathbf{1 . 2}$ in the book.

80: a. Domain: $(-\infty, \infty)$. b. Range: $[0, \infty)$. c. x-intercept: -1 . d. y-intercept: 1. e. $f(-4)=3 ; f(3)=4$.
2. Do exercises 5, 6, 47 and 50 from Section 1.3 in the book.

6: a. Increasing in $[-3,2]$. b. Never decreasing. c. Never constant.
50: a.

b. Range: the values 4 and -4 (in set notation, $\{-4,4\}$).
3. Do exercises 66, 70 and 80 from Section 1.6 in the book.

66: $h(x)=-2(x+2)^{2}+1$. (Graph x^{2}, move it 2 left, stretch vertically by 2 , reflect w.r.t. x-axis, then 1 up.)

70: $h(x)=\sqrt{x+1}$. (Graph \sqrt{x}, move it 1 left.)

80: $h(x)=2 \sqrt{x+1}-1$. (Graph \sqrt{x}, move it 1 left, stretch vertically by 2 , move it 1 down.)

4. Do exercises 67, 68 and 70 from Section 1.7 in the book.
68. $f(x)=\frac{x}{x+5}, g(x)=\frac{6}{x}$.
a. $(f \circ g)(x)=f(g(x))=\frac{\frac{6}{x}}{\frac{6}{x}+5}=\frac{6}{5 x+6}$
b. To find the domain of $f \circ g$, exclude those values of x not in the domain of g and those values of x such that $g(x)$ is not in the domain of f.

Domain of g : every number excluding 0 . Domain of f : every number excluding -5 . For $g(x)$ not to be in the domain of f we solve $g(x)=-5$, so $\frac{6}{x}=-5$, so $x=-\frac{6}{5}$. Therefore the domain of $f \circ g$ is $\left(-\infty,-\frac{6}{5}\right) \cup\left(-\frac{6}{5}, 0\right) \cup(0, \infty)$.
70. $f(x)=\sqrt{x}, g(x)=x-3$.
a. $(f \circ g)(x)=f(g(x))=\sqrt{x-3}$
b. To find the domain of $f \circ g$, exclude those values of x not in the domain of g and those values of x such that $g(x)$ is not in the domain of f.

Domain of g : every number (nothing excluded). Domain of f : every nonnegative number, so exclude all the values for which $g(x)<0$, so $x-3<0$ so $x<3$. Therefore the domain of $f \circ g$ is $[3, \infty)$.
5. Do exercise $\mathbf{2 6}$ from Section 2.2 in the book.
26. $f(x)=1-(x-3)^{2}$. Vertex: $(3,1)$. Axis of symmetry: $x=3 . x$-intercepts: 4 and 2 . y-intercepts: -8 . Domain: $(-\infty, \infty)$. Range $(-\infty, 1]$.

6. Do exercises 41, 47, 52 from Section 2.3 in the book.
52. $f(x)=6 x-x^{3}-x^{5}$. a. End behaviour: like $-x^{5}$ (up left and down right). b. x-intercepts: factor $f(x)=$ $-x\left(x^{4}+x^{2}-6\right)=-x\left(x^{2}-2\right)\left(x^{2}+3\right)=-x(x+\sqrt{2})(x-\sqrt{2})\left(x^{2}+3\right)$, so they are $0, \sqrt{2}$ and $-\sqrt{2}$ all with multiplicity 1. c. y-intercept: $f(0)=0$. d. $f(-x)=6(-x)-(-x)^{3}-(-x)^{5}=-6 x+x^{3}+x^{5}=-\left(6 x-x^{3}-x^{5}\right)=-f(x)$, so f is odd. e.

7. Do exercises 11, 13, 33 and 34 from Section 2.4 in the book.
34. $f(3)=-27$.
8. Do exercises 2, 22, 23 and 26 from Section 2.5 in the book.
2. Possible rational roots of $x^{3}+3 x^{2}-6 x-8$ are: $\pm 1, \pm 2, \pm 4, \pm 8$.
22. $2 x^{3}-5 x^{2}-6 x+4=0$. a. Possible rational roots are: $\pm 1, \pm 2, \pm 4, \pm \frac{1}{2}$. b. $\frac{1}{2}$ works, and $2 x^{3}-5 x^{2}-6 x+4=$ $2\left(x-\frac{1}{2}\right)\left(x^{2}-2 x-4\right)=0$. So one solution is $x=\frac{1}{2}$. c. We find the other two by solving $\left(x^{2}-2 x-4\right)=0$ using the quadratic formula. This gives $x=1+\sqrt{5}$ and $x=1-\sqrt{5}$.
26. If $2 i$ is a zero, $-2 i$ must also be a zero, and f has degree 3 , so $f(x)=A(x-4)(x-2 i)(x+2 i)$. Now $f(-1)=50$, so $f(-1)=A(-1-4)(-1-2 i)(-1+2 i)=-25 A=50$, so $A=-2$ and $f(x)=-2(x-4)(x-2 i)(x+2 i)$.
9. Do exercises 51, 53, and 64 from Section 2.6 in the book.
64. $f(x)=\frac{x-4}{x^{2}-x-6}$.
y-intercept: $f(0)=\frac{2}{3}$.
x-intercept: $x=4$.
f cannot be even or odd since the x-intercepts are not symmetric about 0 (4 is an x-intercept but -4 is not).
Horizontal Asymptotes: $f(x) \approx \frac{x}{x^{2}}=\frac{1}{x}$, so f has a horizontal asymptote at $y=0$.
Vertical Asymptotes: The denominator of $f(x)$ is $(x-3)(x+2)$, so f has vertical asymptotes at 3 and -2 .

10. Do exercises 11, 16, 53 and 56 from Section 2.7 in the book.
16. $3 x^{2}+16 x<-5 \Rightarrow 3 x^{2}+16 x+5<0 \Rightarrow(x+5)(3 x+1)<0$. Do a table of values. The solution is $\left(-5,-\frac{1}{3}\right)$.
56. $\frac{x}{x-1}>2 \Rightarrow \frac{x}{x-1}-2>0 \Rightarrow \frac{-x+2}{x-1}>0$. Do a table of values. The solution is $(1,2)$.
11. Do exercises 36 and 44 from Section 3.1 in the book.
36. $f(x)=e^{x+1}$. Move the graph of e^{x} one unit to the left.

44. $f(x)=\frac{1}{2} e^{x}$. Shrink the ${ }^{-6}$ graph of e^{x} vertically by 2 .

12. Do exercises $\mathbf{3 0}, \mathbf{3 2}, \mathbf{3 4}, 76,78,86$ and 90 from Section 3.2 in the book.
30. $\log _{6} \sqrt{6}=\frac{1}{2}$.
32. $\log _{3} \frac{1}{\sqrt{3}}=-\frac{1}{2}$.
34. $\log _{81} 9=\frac{1}{2}$.
76. Find the domain of $f(x)=\log _{5}(x+6)$. For something to be in the domain of $\log _{b}$, that something has to be positive. Therefore we need $x+6>0$, so $x>-6$, so the domain of f is $(-6, \infty)$.
78. Find the domain of $f(x)=\log (7-x)$. Again, for something to be in the domain of $\log _{b}$, that something has to be positive. Therefore we need $7-x>0$, so $x<7$, so the domain of f is $(-\infty, 7)$.
86. $10^{\log 53}=53 . \quad$ 90. $\ln e^{7}=7$.
13. Do exercises 40, 58, 62, 72 and 74 from Section 3.3 in the book.
40. $\log \left[\frac{100 x^{3} \sqrt[3]{5-x}}{3(x+7)^{2}}\right]=\log 100+3 \log x+\frac{1}{3} \log (5-x)-\log 3-2 \log (x+7)=2+3 \log x+\frac{1}{3} \log (5-x)-\log 3-2 \log (x+7)$
58. $2 \ln x-\frac{1}{2} \ln y=\ln \left(\frac{x^{2}}{\sqrt{y}}\right)$.
62. $4 \ln x+7 \ln y-3 \ln z=\ln \left(\frac{x^{4} y^{7}}{z^{3}}\right)$.
72. $\log _{6} 17=\frac{\log 17}{\log 6}=1.5813$.
74. $\log _{16} 57.2=\frac{\log 57.2}{\log 16}=1.4595$.
14. Do exercises 6, 8, 68 and 70 from Section 3.4 in the book.
6. $3^{2 x+1}=27 \Rightarrow 3^{2 x+1}=3^{3} \Rightarrow 2 x+1=3 \Rightarrow x=1$. The solution is $x=1$.
8. $5^{3 x-1}=125 \Rightarrow 5^{3 x-1}=5^{3} \Rightarrow 3 x-1=3 \Rightarrow x=\frac{4}{3}$. The solution is $x=\frac{4}{3}$.
68. $\log _{2}(x-1)+\log _{2}(x+1)=3 \Rightarrow \log _{2}(x-1)(x+1)=3 \Rightarrow(x-1)(x+1)=8 \Rightarrow x^{2}-1=8 \Rightarrow x^{2}=9 \Rightarrow$ $x= \pm 3$. However, $x=-3$ does not work because $\log _{2}(-3-1)=\log _{2}(-4)$ is not defined. So the only solution is $x=3$.
70. $\log _{4}(x+2)-\log _{4}(x-1)=1 \Rightarrow \log _{4} \frac{x+2}{x-1}=1 \Rightarrow \frac{x+2}{x-1}=4 \Rightarrow \frac{x+2}{x-1}-4=0 \Rightarrow \frac{-3 x+6}{x-1}=0 \Rightarrow \frac{-3(x-2)}{x-1}=0$, so $x=2$. Check: $\log _{4}(2+2)-\log _{4}(2-1)=\log _{4} 4-\log _{4} 1=1-0=1$.
15. Do exercises $25,28,40,48$ from Section 4.2 in the book.
28. If $\sin t=\frac{2}{3}$ and $\cos t=\frac{\sqrt{5}}{3}$ then $\tan t=\frac{\sin t}{\cos t}=\frac{2}{\sqrt{5}}, \sec t=\frac{1}{\cos t}=\frac{3}{\sqrt{5}}, \csc t=\frac{1}{\sin t}=\frac{3}{2}, \cot t=\frac{\cos t}{\sin t}=\frac{\sqrt{5}}{2}$
40. $\csc \frac{9 \pi}{4}=\frac{1}{\sin \frac{9 \pi}{4}}=\frac{1}{\sin \frac{\pi}{4}}=\frac{1}{\frac{\sqrt{2}}{2}}=\frac{2}{\sqrt{2}}=\sqrt{2}$.
48. $-\cot \left(\frac{\pi}{4}+17 \pi\right)=-\cot \left(\frac{\pi}{4}+\pi\right)=-\cot \left(\frac{5 \pi}{4}\right)=-\frac{\cos \left(\frac{5 \pi}{4}\right)}{\sin \left(\frac{5 \pi}{4}\right)}=-\frac{-\frac{\sqrt{2}}{2}}{-\frac{\sqrt{2}}{2}}=-1$ (the first equality comes from the fact that $\left(\frac{\pi}{4}+17 \pi\right)$ and $\left(\frac{\pi}{4}+\pi\right)$ are coterminal angles).
16. Do exercises $10,12,14,44$ and 54 from Section 4.3 in the book.
10. $\tan 30^{\circ}=\frac{1}{\sqrt{3}}$.
12. $\csc 45^{\circ}=\frac{\sqrt{2}}{1}=\sqrt{2}$.
14. $\cot \frac{\pi}{3}=\cot 60^{\circ}=\frac{1}{\sqrt{3}}$.
44. $\frac{1}{\cot \frac{\pi}{4}}-\frac{2}{\csc \frac{\pi}{6}}=\frac{\sin \frac{\pi}{4}}{\cos \frac{\pi}{4}}-2 \sin \frac{\pi}{6}=\frac{\frac{\sqrt{2}}{2}}{\frac{\sqrt{2}}{2}}-2 \cdot \frac{1}{2}=1-1=0$.
54. By looking at the picture, $\tan 40^{\circ}=\frac{h}{35}$, so $h=35 \tan 40^{\circ} \approx 29 \mathrm{ft}$.
17. Do exercises $25,26,68,72$ and 74 from Section 4.4 in the book.
26. Suppose $\cos \theta=\frac{4}{5}$. Draw a right triangle whose leg adjacent to θ has length 4 and whose hypotenuse has length 5. Then the leg opposite to θ has lenght $\sqrt{5^{2}-4^{2}}=\sqrt{25-16}=\sqrt{9}=3$ by the Pythagorean theorem. So $\sin \theta= \pm \frac{3}{5}$. Since θ is in quadrant IV, $\sin \theta$ is negative, so $\sin \theta=-\frac{3}{5}$ and from here $\tan \theta=\frac{\sin \theta}{\cos \theta}=-\frac{3}{4}$, $\sec \theta=\frac{1}{\cos \theta}=\frac{5}{4}, \csc \theta=\frac{1}{\sin \theta}=-\frac{5}{3}$, and $\cot \theta=\frac{\cos \theta}{\sin \theta}=-\frac{4}{3}$.
68. $\cos \frac{3 \pi}{4}=-\frac{\sqrt{2}}{2}$.
72. $\tan \frac{9 \pi}{2}=\tan \frac{8 \pi+\pi}{2}=\tan \left(\frac{8 \pi}{2}+\frac{\pi}{2}\right)=\tan \left(4 \pi+\frac{\pi}{2}\right)=\tan \frac{\pi}{2}$, which is undefined.
74. $\sin \left(-225^{\circ}\right)=\sin \left(-225^{\circ}+360^{\circ}\right)=\sin \left(135^{\circ}\right)=\sqrt{2} 2$.
18. Do exercises $17,20,24$ and 26 from Section 4.5 in the book.
20. $y=\sin \left(2 x-\frac{\pi}{2}\right)$. Amplitude $=1$, phase shift $=\frac{\pi}{4}, \operatorname{period}=\pi$.

24. $y=\frac{1}{2} \sin (x+\pi)$. Amplitude $=\frac{1}{2}$, phase shift $=-\pi$, period $=2 \pi$.

26. $y=-3 \sin \left(2 x+\frac{\pi}{2}\right)$. Amplitude $=3$, phase shift $=-\frac{\pi}{4}$, $\operatorname{period}=\pi$.

