NAME:

DO NOT write your answers here, except the graphs. Do it in other sheets and show all your work. STAPLE this sheet to your other sheets.

- 1. For the following rational functions, first find
 - 1. The end behaviour and the horizontal asymptotes, if any.
 - 3. The x-intercepts and their multiplicity.

- 2. The vertical asymptotes.
- 4. The y-intercept.

Then sketch the graph of the function in the graph paper provided (or in your own).

a)
$$f(x) = \frac{x+1}{x-1}$$

c)
$$f(x) = \frac{x-4}{x^2-x-6}$$

b)
$$f(x) = \frac{3x^2}{x^2 - 9}$$

 $f(x) = \frac{2x + 5}{x^3 - 13x + 12}$

$$f(x) = \frac{2x+5}{x^3 - 13x + 12}$$

2. Use a calculator to approximate the following numbers to 4 decimal places.

a)
$$2^{3.4} =$$

b)
$$e^{1.5} =$$

c)
$$6^{-\frac{1}{3}} =$$

d)
$$\sqrt{3}^{\sqrt{2}} =$$

e)
$$\log 12 =$$

f)
$$\log \sqrt{5} =$$

g)
$$\ln \frac{1}{5} =$$

3. Find without using a calculator.

a)
$$\log_2 8 =$$

b)
$$\log_3 \frac{1}{3} =$$

c)
$$\log_6 \sqrt{6} =$$

d)
$$\log_{102} 102^4 =$$

e)
$$\log_8 2 =$$

f)
$$\log_{27} \frac{1}{3} =$$

g)
$$\log_5 1 =$$

h)
$$\log_3(\log_8 2) =$$

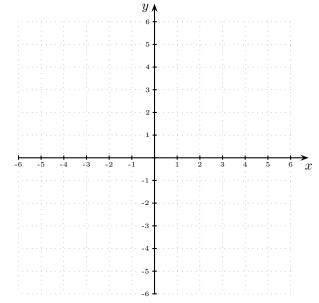
4. Simplify each expression. Here a is a positive number.

a)
$$\log_a a^4 =$$

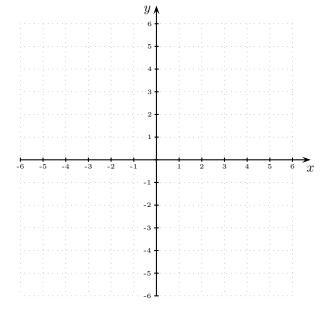
b)
$$\log_a \frac{1}{a^7} =$$

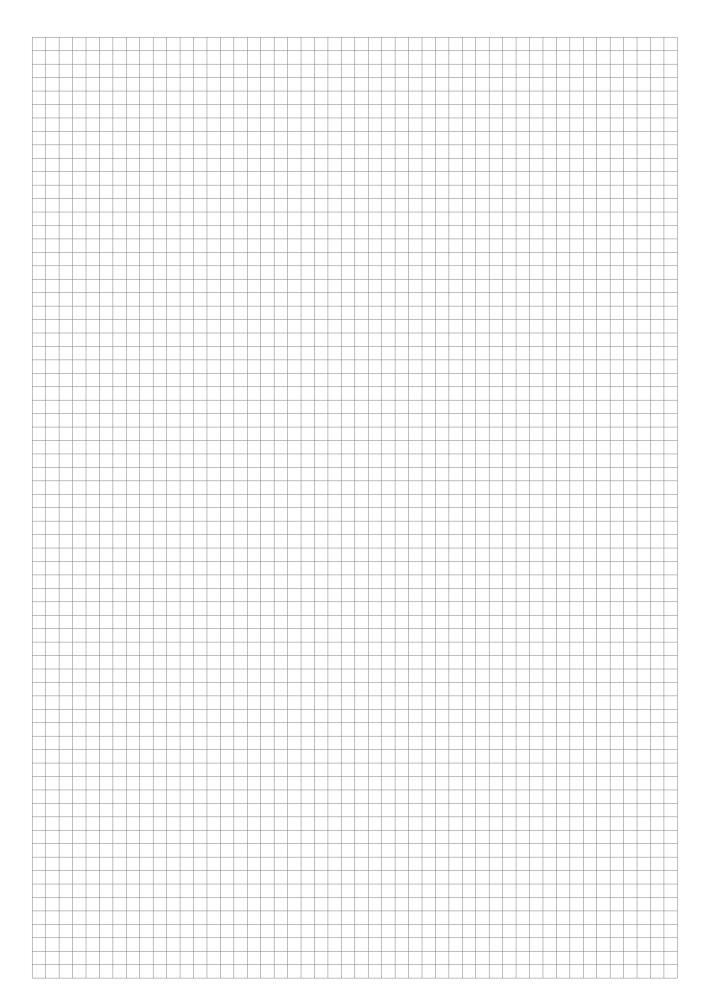
c)
$$\log_a a^{\frac{1}{5}} =$$

d)
$$\log_a \sqrt[3]{a} =$$


e)
$$2^{\log_2 7} =$$

f)
$$a^{\log_a \frac{1}{5}} =$$


g)
$$10^{\log \sqrt{4}} =$$


h)
$$e^{\ln 3x^2} =$$

- **5.** Graph the following functions in the axes provided (both in the same axes).
 - a) $f(x) = 2^x$ and $g(x) = \log_2 x$.

b) $f(x) = 2^{x+3}$ and $g(x) = \log_2(x) - 3$.

