MATH 30 - Precalculus. Homework 12. Not to hand in. Professor Luis Fernández

SOLUTION

DO NOT write your answers here. Do it in other sheets and show all your work.
STAPLE this sheet to your other sheets.

1. Recall that to show that a function g is the inverse of a function f one needs to show that $f(g(x))=x$ and that $g(f(x))=x$. To do this,
2. Find $f(g(x))$ and simplify and see that you get x.
3. Find $g(f(x))$ and simplify and see that you get x.

For the following, show that g is the inverse of f.
a) $f(x)=4 x-7$ and $g(x)=\frac{x+7}{4}$.
b) $f(x)=\frac{2}{x-5}$ and $g(x)=\frac{2}{x}+5$.
c) $f(x)=-3 x+1$ and $g(x)=\frac{x-1}{-3}$.
d) $f(x)=\frac{x-2}{2 x+1}$ and $g(x)=\frac{-x-2}{2 x-1}+5$.

Solution:

a) $f(g(x))=f\left(\frac{x+7}{4}\right)=4 \cdot \frac{x+7}{4}-7=(x+7)-7=x$. YES.
2. $g(f(x))=g(4 x-7)=\frac{(4 x-7)+7}{4}=\frac{4 x}{4}=x$. YES.
b) $f(g(x))=f\left(\frac{2}{x}+5\right)=\frac{2}{\left(\frac{2}{x}+5\right)-5}=\frac{2}{\frac{2}{x}}=x$. YES.
2. $g(f(x))=g\left(\frac{2}{x-5}\right)=\frac{2}{\frac{2}{x-5}}+5=\frac{2(x-5)}{2}+5=(x-5)+5=x$. YES.
c) and d): proceed in the same way.
2. Find the inverse of the following functions.
a) $f(x)=2 x-1$
b) $g(x)=\frac{1}{x}+1$
c) $h(x)=x^{2}-4$, with domain $(-\infty, 0]($ so $x \leq 0)$
d) $i(x)=\frac{x-1}{x+1}$.

Solution:

a) We need to solve $f(y)=x$ for y, i.e. solve $2 y-1=x$ for y.

$$
2 y-1=x \Rightarrow 2 y=x+1 \quad \Rightarrow \quad y=\frac{x+1}{2}
$$

Therefore the inverse of f is $f^{-1}(x)=\frac{x+1}{2}$ (or, if you prefer, $f^{-1}(y)=\frac{y+1}{2}$).
b) We need to solve $g(y)=x$ for y, i.e. solve $\frac{1}{y}+1=x$ for y.

$$
\frac{1}{y}+1=x \Rightarrow \frac{1}{y}=x-1 \quad \Rightarrow \quad y=\frac{1}{x-1}
$$

Therefore the inverse of g is $g^{-1}(x)=\frac{1}{x-1}$.
c) We need to solve $h(y)=x$ for y, i.e. solve $y^{2}-4=x$ for y, where we know that $y \leq 0$.

$$
y^{2}-4=x \quad \Rightarrow \quad y^{2}=x+4 \quad \Rightarrow \quad y= \pm \sqrt{x+4}
$$

but since we know that y is negative, the only possible solution is $y=-\sqrt{x+4}$. Therefore the inverse of h is $h^{-1}(x)=-\sqrt{x+4}$.
d) We need to solve $i(y)=x$ for y, i.e. solve $\frac{y-1}{y+1}=x$ for y.
$\frac{y-1}{y+1}=x \Rightarrow y-1=x(y+1) \Rightarrow y-1=x y+x \quad \Rightarrow \quad y-x y=x+1 \quad \Rightarrow \quad y(1-x)=x+1 \quad \Rightarrow \quad y=\frac{x+1}{1-x}$.
Therefore the inverse of i is $i^{-1}(x)=\frac{x+1}{1-x}$.
3. Let f be the function described by the following graph:

a) Fill in the blanks (using interval notation):

The domain of f is $[-4,4]$
The domain of f^{-1} is $[-6,-2]$

The range of f is $[-6,-2]$
The range of f^{-1} is $[-4,4]$

We can see that the domain of f is the same as the range of f^{-1}, and the range of f is the same as the domain of f^{-1}
b) Evaluate the following:

$$
f^{-1}(-3)=-2 \quad f^{-1}(-4)=0 \quad f^{-1}(-6)=2
$$

4. Solve the following equations.
a) $|x-3|=4$. Solution: $x-3=4$ or $x-3=-4$, which gives $x=7$ or $x=-1$.
b) $|x+2|=5$. Solution: $x+2=5$ or $x+2=-5$, which gives $x=3$ or $x=-7$.
c) $|2 x+3|=9$. Solution: $2 x+3=9$ or $2 x+3=-9$, which gives $x=3$ or $x=-6$.
5. Solve the following inequalities.
a) $|x-3| \leq 4$. Solution: $-4 \leq x-3 \leq 4$, which gives $-1 \leq x \leq 7$, so the solution is $[-1,7]$.
b) $|x+2| \geq 5$. Solution: $x+2 \geq 5$ or $x+2 \leq-5$, which gives $x \geq 3$ or $x \leq-7$, so the solution is $(-\infty,-7] \cup[3, \infty)$.
c) $|2 x+3|>9$. Solution: $2 x+3>9$ or $2 x+3<-9$, which gives $x>3$ or $x<-6$, so the solution is $(-\infty,-6) \cup(3, \infty)$.
6. Find the following values of inverse trigonometric functions.
a) $\sin ^{-1}\left(\frac{\sqrt{2}}{2}\right)=\frac{\pi}{4}$
b) $\sin ^{-1}\left(-\frac{\sqrt{3}}{2}\right)=-\frac{\pi}{3}$
c) $\sin ^{-1}\left(-\frac{\sqrt{1}}{2}\right)=-\frac{\pi}{6}$
d) $\sin ^{-1}(-1)=-\frac{\pi}{2}$
e) $\sin ^{-1}(1)=\frac{\pi}{2}$
f) $\cos ^{-1}\left(-\frac{\sqrt{1}}{2}\right)=\frac{2 \pi}{3}$
