MATH 30 - Precalculus. Homework 12. Not to hand in. Professor Luis Fernández

 NAME:DO NOT write your answers here. Do it in other sheets and show all your work.
STAPLE this sheet to your other sheets.

1. Recall that to show that a function g is the inverse of a function f one needs to show that $f(g(x))=x$ and that $g(f(x))=x$. To do this,
2. Find $f(g(x))$ and simplify and see that you get x.
3. Find $g(f(x))$ and simplify and see that you get x.

For the following, show that g is the inverse of f.
a) $f(x)=4 x-7$ and $g(x)=\frac{x+7}{4}$.
b) $f(x)=\frac{2}{x-5}$ and $g(x)=\frac{2}{x}+5$.
c) $f(x)=-3 x+1$ and $g(x)=\frac{x-1}{-3}$.
d) $f(x)=\frac{x-2}{2 x+1}$ and $g(x)=\frac{-x-2}{2 x-1}+5$.
2. Find the inverse of the following functions.
a) $f(x)=2 x-1$
b) $g(x)=\frac{1}{x}+1$
c) $h(x)=x^{2}-4$, with domain $(-\infty, 0]($ so $x \leq 0)$
d) $i(x)=\frac{x-1}{x+1}$.
3. Let f be the function described by the following graph:

a) Fill in the blanks (using interval notation):

The domain of f is \qquad
The domain of f^{-1} is \qquad
The range of f is \qquad
-

We can see that the domain of f is the same as the
The range of f^{-1} is \qquad and the range of f is the same as the domain of
\qquad of f^{-1},
\qquad
b) Evaluate the following:

$$
f^{-1}(-3)=\ldots \ldots \ldots \ldots \ldots
$$

$$
f^{-1}(-4)=
$$

\qquad

$$
f^{-1}(-6)=
$$

\qquad
4. Solve the following equations.
a) $|x-3|=4$.
b) $|x+2|=5$.
c) $|2 x+3|=9$.
5. Solve the following inequalities.
a) $|x-3| \leq 4$.
b) $|x+2| \geq 5$.
c) $|2 x+3|>9$.
6. Find the following values of inverse trigonometric functions.
a) $\sin ^{-1}\left(\frac{\sqrt{2}}{2}\right)=$
b) $\sin ^{-1}\left(-\frac{\sqrt{3}}{2}\right)=$
c) $\sin ^{-1}\left(-\frac{\sqrt{1}}{2}\right)=$
d) $\sin ^{-1}(-1)=$
e) $\sin ^{-1}(1)=$
f) $\cos ^{-1}\left(-\frac{\sqrt{1}}{2}\right)=$

