MATH 30 - Precalculus. Homework 6. Due We. 03/20/2024. Professor Luis Fernández

SOLUTION

DO NOT write your answers here, except the graphs. Do it in other sheets and show all your work. STAPLE this sheet to your other sheets.

1. Use the properties of logarithms to expand the following expressions.
a) $\log _{9}(5 y)=\log _{9} 5+\log _{9} y$
b) $\log _{8} x^{7}=7 \log _{8} x$
c) $\log _{b}\left(3 x^{2} y^{3}\right)=\log _{b} 3+2 \log _{b} x+3 \log _{b} y$
d) $\log _{8} \frac{x^{\frac{1}{2}}}{y^{3}}=\frac{1}{2} \log _{8} x-3 \log _{8} y$
e) $\log _{5} \sqrt[5]{\frac{x^{2}}{y}}=\frac{1}{5}\left(2 \log _{5} x-\log y\right)$
f) g) $\ln \left[\frac{x^{4} \sqrt{x^{2}+3}}{(x+3)^{5}}\right]=4 \ln x+\frac{1}{2} \ln \left(x^{2}+3\right)-5 \ln (x+3)$
2. Use the properties of logarithms to condense the following expressions.
a) $\log x+\log 5=\log 5 x$
b) $\log _{8} x+3 \log _{8} y=\log _{8}\left(x y^{3}\right)$
c) $4 \operatorname{Ln}(x+6)-5 \operatorname{Ln}(x+1)=\operatorname{Ln}\left(\frac{(x+6)^{4}}{(x+1)^{5}}\right)$
d) $2 \log x+3 \log y-4 \log z=\log \left(\frac{x^{2} y^{3}}{z^{4}}\right)$
e) $\frac{1}{2}(\log x+\log y)=\log \sqrt{x y}$
f) $\frac{1}{3}\left(\log _{7} x+4 \log _{7} y\right)-3 \log _{7}(x+y)=\log _{7} \frac{\sqrt[3]{x y^{4}}}{(x+y)^{3}}$
3. Use the change of base formula to write the following logarithms as logarithms in the indicated base.
a) $\log _{7} 12$; write it in base 10 . Solution: $\log _{7} 12=\frac{\log 12}{\log 7}$
b) $\log _{9} 127$; write it in base e. Solution: $\log _{9} 127=\frac{\operatorname{Ln} 127}{\operatorname{Ln} 9}$
c) $\log _{25} 9$; write it in base 5 and simplify. Solution: $\log _{5} 9=\frac{\log _{5} 9}{\log _{5} 25}=\frac{\log _{5} 9}{2}$
d) $\log _{\frac{1}{2}} 8$; write it in base 2 and simplify. Solution: $\log _{\frac{1}{2}} 8=\frac{\log _{2} 8}{\log _{2} \frac{1}{2}}=\frac{3}{-1}=-3$
4. If $\log _{2} b=\pi$, use the change of base formula to find $\log _{b} 8=\frac{\log _{2} 8}{\log _{2} b}=\frac{3}{\pi}$.
5. Solve the following equations.
a) $4^{x}=32$.
b) $27^{x}=81$.
c) $2^{2 x-1}=32$
d) $5^{2-x}=\frac{1}{125}$
e) $7^{\frac{x-2}{6}}=\sqrt{7}$.
f) $8^{1-x}=4^{x+2}$

Solutions:

a) $4^{x}=32$. Write both sides as powers of $2:\left(2^{2}\right)^{x}=2^{5}$, so using the rules of exponents we have $2^{2 x}=2^{5}$, so $2 x=5$, so $x=\frac{5}{2}$.
b) $27^{x}=81$. Write both sides as powers of $3:\left(3^{3}\right)^{x}=3^{4}$, so using the rules of exponents we have $3^{3 x}=3^{4}$, so $3 x=4$, so $x=\frac{4}{3}$.
c) $2^{2 x-1}=8$. Write both sides as powers of 2 and proceed as in the previous exercises. An alternative way follows: take $\log _{2}$ of both sides, $\log _{2} 2^{2 x-1}=\log _{2} 8$, and simplify: $2 x-1=3$. Therefore $2 x=4$, so $x=2$.
d) $5^{2-x}=\frac{1}{125}$. Proceed as in exercises a) and b) or as in c: Take $\log _{5}$ of both sides and simplify: $\log _{5} 5^{2-x}=\log _{5} \frac{1}{125}$, so $2-x=-3$. Then solve the equation: $2=x-3$, so $5=x$.
e) $7^{\frac{x-2}{6}}=\sqrt{7}$. As before, take $\log _{7}$ of both sides and simplify: $\log _{7} 7^{\frac{x-2}{6}}=\log _{7} \sqrt{7}$ so $\frac{x-2}{6}=\frac{1}{2}$. Solve this equation: multiply both sides by 6 to get $x-2=3$, so $x=5$.
f) $8^{1-x}=4^{x+2}$. Take $\log _{2}$ of both sides (why base 2? Because 2 divides the bases of the exponentials in both sides): $\log _{2} 8^{1-x}=\log _{2} 4^{x+2}$. Use the properties of logarithms and simplify: $(1-x) \log _{2} 8=(x+2) \log _{2} 4$. Now, $\log _{2} 8=3$ and $\log _{2} 4=2$, so we get $3(1-x)=2(x+2)$, so $3-3 x=2 x+4$ so $-5 x=1$, so $x=-\frac{1}{5}$.
6. Solve each exponential equation. Express each solution using natural logarithms (i.e. in base e) or logarithms in base 10. Then use a calculator to find a decimal approximation, correct to two decimal places.
a) $5 e^{x}=7$
b) $4 e^{7 x}=10,273$
c) $3^{\frac{x}{7}}=0.2$
d) $7^{2 x-1}=3^{x+2}$

Solutions:
a) $5 e^{x}=7$. Take Ln of both sides: $\operatorname{Ln}\left(5 e^{x}\right)=\operatorname{Ln} 7$. Use the properties of logarithms to expand: $\operatorname{Ln} 5+\operatorname{Ln} e^{x}=\operatorname{Ln} 7$. Now, $\operatorname{Ln} e^{x}=x$, so we get $\operatorname{Ln} 5+x=\operatorname{Ln} 7$. Therefore $x=\operatorname{Ln} 7-\operatorname{Ln} 5 \approx 0.34$.
b) $4 e^{7 x}=10,273$. Take Ln of both sides: $\operatorname{Ln}\left(4 e^{7 x}\right)=\operatorname{Ln} 10,273$. Use the properties of logarithms to expand: $\operatorname{Ln} 4+$ $\operatorname{Ln} e^{7 x}=\operatorname{Ln} 10,273$. Now, $\operatorname{Ln} e^{7 x}=7 x$, so we get $\operatorname{Ln} 4+7 x=\operatorname{Ln} 10,273$. Therefore $7 x=\operatorname{Ln} 10,273-\operatorname{Ln} 4$, so $x=\frac{\operatorname{Ln} 10,273-\operatorname{Ln} 4}{7} \approx 1.12$.
c) $3^{\frac{x}{7}}=0.2$. Take Ln of both sides: $\operatorname{Ln}\left(3^{\frac{x}{7}}\right)=\operatorname{Ln} 0.2$. Use the properties of logarithms to expand: $\frac{x}{7} \operatorname{Ln} 3=\operatorname{Ln} 0.2$. Divide both sides by $\operatorname{Ln} 3$ to get $\frac{x}{7}=\frac{\operatorname{Ln} 0.2}{\operatorname{Ln} 3}$. Multiply both sides by 7 to get $x=\frac{7 \operatorname{Ln} 0.2}{\operatorname{Ln} 3} \approx 10.25$.
d) $7^{2 x-1}=3^{x+2}$. Take Ln of both sides and use the properties of logarithms to get $(2 x-1) \operatorname{Ln} 7=(x+2) \operatorname{Ln} 3$. Distribute: $(2 \operatorname{Ln} 7) x-\operatorname{Ln} 7=x \operatorname{Ln} 3+2 \operatorname{Ln} 3$. Subtract $x \operatorname{Ln} 3$ from both sides and add $\operatorname{Ln} 7$ to both sides: $(2 \operatorname{Ln} 7) x-x \operatorname{Ln} 3=$ $\operatorname{Ln} 7+2 \operatorname{Ln} 3$. Factor x out in the LHS: $x(2 \operatorname{Ln} 7-\operatorname{Ln} 3)=\operatorname{Ln} 7+2 \operatorname{Ln} 3$ and finally divide both sides by $(2 \operatorname{Ln} 7-\operatorname{Ln} 3)$ to get $x=\frac{\operatorname{Ln} 7+2 \operatorname{Ln} 3}{2 \operatorname{Ln} 7-\operatorname{Ln} 3} \approx 1.48$
7. Solve the following logarithmic equations.
a) $\log _{5} x=3$
b) $\log _{4}(x-7)=3$
c) $2 \log _{5} x=4$
d) $\log _{5} x-2=\log _{5} 3$
e) $\log _{2} \sqrt{x+4}=1$
f) $\log _{2}(x-1)+\log _{2}(x+1)=3$
g) $\log (x+7)-\log 3=\log (7 x-1)$
h) $\log (x+3)+\log (x-2)=\log 14$

Solutions:

a) $\log _{5} x=3$. Write it in exponential form: $x=5^{3}=125$.

Check the solution: $\log _{5} 5^{3}=3$: YES.
b) $\log _{4}(x-7)=3$. Write it in exponential form: $x-7=4^{3}=64$. Then add 7 to both sides to get $x=71$.

Check the solution: $\log _{4}(71-3)=\log _{4} 64=3:$ YES.
c) $\log _{5} x-2=\log _{5} 3$. Move the 2 to the right hand side and the $\log _{5} 3$ to the left hand side to get $\log _{5} x-\log _{5} 3=2$. Then use the properties of logarithms to condense the LHS: $\log _{5}\left(\frac{x}{3}\right)=2$. Now write it in exponential form: $\frac{x}{3}=5^{2}=25$. Finally multiply by 3 to get $x=75$.
Check the solution: $\log _{5} 75-2=\log _{5}(25 \cdot 3)-2=\log _{5} 25+\log _{5} 3-2=2+\log _{5} 3-2=\log _{5} 3$: YES.
d) $2 \log _{5} x=4$. Divide both sides by $2: \log _{5} x=2$, then write it in exponential form to get $x=5^{2}=25$.

Check the solution: $2 \log _{5} 25=2 \cdot 2=4$: YES.
e) $\log _{2} \sqrt{x+4}=1$. Write it in exponential form: $\sqrt{x+4}=2$. Then square both sides to get rid of the $\sqrt{ }: x+4=4$. Therefore, $x=0$.
Check the solution: $\log _{2} \sqrt{0+4}=\log _{2} \sqrt{4}=\log _{2} 3=1$: YES.
f) $\log _{2}(x-1)+\log _{2}(x+1)=3$. Use the properties of logarithms to condense the LHS: $\log _{2}(x-1)(x+1)=3$. Then write it in exponential form: $(x-1)(x+1)=2^{3}=8$. Now solve this equation. First expand the LHS to get $x^{2}-1=8$, so $x^{2}=9$, so $x=-3$ or $x=3$.
Check the solution: Check the solution $x=-3: \log _{2}(-3-1)+\log _{2}(-3+1)=\log _{2}(-4)+\log _{2}(-2)$ which is NOT DEFINED, so $x=-3$ is NOT a solution. Now check $x=3: \log _{2}(3-1)+\log _{2}(3+1)=\log _{2}(2)+\log _{2}(4)=1+2=3$: YES. Therefore the only solution is $x=3$.
g) $\log (x+7)-\log 3=\log (7 x-1)$. Use the properties of logarithms to condense the LHS: $\log \frac{x+7}{3}=\log (7 x-1)$. Remove the \log 's in both sides: $\frac{x+7}{3}=7 x-1$. Then solve this equation: multiply both sides by 3 to get $x+7=21 x-3$, so $-20 x=-10$, so $x=\frac{1}{2}$.
Check the solution: The LHS is $\log \left(\frac{1}{2}+7\right)-\log 3=\log \frac{15}{2}-\log 3=\log \frac{15}{6}=\log \frac{5}{3}$. The RHS is $\log \left(7 \cdot \frac{1}{2}-1\right)=$ $\log \left(\frac{7}{2}-1\right)=\log \frac{5}{2}:$ YES.
h) $\log (x+3)+\log (x-2)=\log 14$. Use the properties of logarithms to condense the LHS: $\log (x+3)(x-2)=\log 14$. Remove the log's in both sides to get $(x+3)(x-2)=14$. Now solve this equation: expand the LHS to get $x^{2}+x-6=14$, so $x^{2}+x-20=0$. Factor the LHS: $(x+5)(x-4)=0$ so the possible solutions are $x=-5$ and $x=4$.
Check the solution: First check $x=-5: \log (-5+3)+\log (-5-2)=\log (-2)+\log (-7)$ which is undefined, so $x=-5$ is NOT a solution. Now check $x=4: \log (4+3)+\log (4-2)=\log (7)+\log (2)=\log (7 \cdot 2)=\log 14$: YES. Therefore the only solution is $x=4$.

