NAME:__

DO NOT write your answers here, except the graphs. Do it in other sheets and **show all your work**. **STAPLE this sheet to your other sheets.**

1. Use the properties of logarithms to expand the following expressions.

a)
$$\log_9(5y) =$$

b) $\log_8 x^7 =$
c) $\log_b(3x^2y^3) =$
d) $\log_8 \frac{x^{\frac{1}{2}}}{y^3} =$
e) $\log_5 \sqrt[5]{\frac{x^2}{y}} =$
f) g) $\ln \left[\frac{x^4\sqrt{x^2+3}}{(x+3)^5}\right] =$

2. Use the properties of logarithms to condense the following expressions.

a)	$\log x + \log 5 =$	b)	$\log_8 x + 3\log_8 y =$
c)	$4 \operatorname{Ln}(x+6) - 5 \operatorname{Ln}(x+1) =$	d)	$2\log x + 3\log y - 4\log z =$
e)	$\frac{1}{2}(\log x + \log y) =$	f)	$\frac{1}{3}(\log_7 x + 4\log_7 y) - 3\log_7(x+y) =$

- 3. Use the change of base formula to write the following logarithms as logarithms in the indicated base.
 - a) $\log_7 12$; write it in base 10.
 - **b**) $\log_9 127$; write it in base *e*.
 - c) $\log_{25} 9$; write it in base 5 and simplify.
 - d) $\log_{\frac{1}{2}} 8$; write it in base 2 and simplify.
- 4. If $\log_2 b = \pi$, use the change of base formula to find $\log_b 8 =$.

5.	Solve	the	following	equations.
•••	~~~~	0110	10110 11 1115	000000000000000000000000000000000000000

a) $4^x = 32$.	b) $27^x = 81$.
c) $2^{2x-1} = 32$	d) $5^{2-x} = \frac{1}{125}$
e) $7^{\frac{x-2}{6}} = \sqrt{7}$.	f) $8^{1-x} = 4^{x+2}$

6. Solve each exponential equation. Express each solution using natural logarithms (i.e. in base e) or logarithms in base 10. Then use a calculator to find a decimal approximation, correct to two decimal places.

a)	$5e^x = 7$	b) $4e^{7x} = 10,273$
c)	$3^{\frac{x}{7}} = 0.2$	d) $7^{2x-1} = 3^{x+2}$

7. Solve the following logarithmic equations.

a) $\log_5 x = 3$	b) $\log_4(x-7) = 3$
c) $2\log_5 x = 4$	d) $\log_5 x - 2 = \log_5 3$
e) $\log_2 \sqrt{x+4} = 1$	f) $\log_2(x-1) + \log_2(x+1) = 3$
g) $\log(x+7) - \log 3 = \log(7x-1)$	h) $\log(x+3) + \log(x-2) = \log 14$