MATH 30 - Precalculus. Homework 4. Due We. 03/06/2024. Professor Luis Fernández SOLUTION

DO NOT write your answers here. Do it in other sheets and show all your work.
STAPLE this sheet to your other sheets.

1. Use synthetic division and the remainder theorem to find the indicated function value.
a) $f(x)=x^{3}-4 x^{2}+x+2$; find $f(3)$.
b) $f(x)=-2 x^{4}-x^{2}+x-2$; find $f(-1)$.
c) $f(x)=x^{5}-4 x^{2}+1$; find $f(2)$.
d) $f(x)=-x^{4}-5 x^{3}-x^{2}+3 x+2$; find $f\left(\frac{1}{2}\right)$.

Solution:

Synthetic divisions skipped. For example, you can use http://www.mathcelebrity.com/syndiv.php to check it.
a) Answer: $f(3)=-4$.
b) Answer: $f(-1)=-6$.
c) Answer: $f(2)=17$.
d) Answer: $f(1 / 2)=\frac{41}{16}$.
2. Solve the following polynomial equations. (We did several examples in class.)
a) $x^{3}-4 x^{2}-7 x+10=0$
b) $3 x^{3}-8 x^{2}-8 x+8=0$
c) $x^{4}+3 x^{3}-20 x^{2}+24 x-8=0$
d) $x^{4}-x^{3}+2 x^{2}-4 x-8=0$

Solution:

a) The possible rational solutions of $x^{3}-4 x^{2}-7 x+10=0$ are $\pm 1, \pm 2, \pm 5, \pm 10$. Now we do synthetic division to test them. Check that 1 is not a root. However, -1 is:

	1	-4	-7	10
1		1	-3	-10
	1	-3	-10	0
-2		-2	10	
	1	-5	0	
5		5		
	1	0		

Therefore the solutions are $1,-2$ and 5 .
b) I only write the solutions (proceed as in the previous exercise, or as in exercise 2). They are $\frac{2}{3}, 1+\sqrt{5}, 1-\sqrt{5}$.
c) I only write the solutions (proceed as in the previous exercise, or as in exercise 2). They are: $1,2,-3-\sqrt{13}$, $-3+\sqrt{13}$.
d) I only write the solutions (proceed as in the previous exercise, or as in exercise 2). They are $-1,2,2 i,-2 i$.
3. Use the results of the previous exercise to factor the following polynomials completely.
[NOTE: you DO NOT need to do any calculation, only use the factor theorem.]
a) $x^{3}-4 x^{2}-7 x+10$
b) $3 x^{3}-8 x^{2}-8 x+8$
c) $x^{4}+3 x^{3}-20 x^{2}+24 x-8$
d) $x^{4}-x^{3}+2 x^{2}-4 x-8$

Solution:

a) From the previous exercise, the zeros of $x^{3}-4 x^{2}-7 x+10$ are $1,-2$ and 5 .

Therefore, $x^{3}-4 x^{2}-7 x+10=(x-1)(x+2)(x-5)$
b) From the previous exercise, the zeros of $3 x^{3}-8 x^{2}-8 x+8$ are $\frac{2}{3}, 1+\sqrt{5}, 1-\sqrt{5}$.

Therefore, $3 x^{3}-8 x^{2}-8 x+8=\left(x-\frac{2}{3}\right)(x-(1+\sqrt{5}))(x-(1-\sqrt{5}))$.
c) From the previous exercise, the zeros of $x^{4}+3 x^{3}-20 x^{2}+24 x-8$ are $1,2,-3-\sqrt{13},-3+\sqrt{13}$.

Therefore, $x^{4}+3 x^{3}-20 x^{2}+24 x-8=(x-1)(x-2)(x-(-3-\sqrt{13}))(x-(-3+\sqrt{13}))$
d) From the previous exercise, the zeros of $x^{4}-x^{3}+2 x^{2}-4 x-8$ are $-1,2,2 i,-2 i$.

Therefore, $x^{4}-x^{3}+2 x^{2}-4 x-8=(x+1)(x-2)(x+2 i)(x-2 i)$.
4. Solve the equation $(x-1)^{2}(x-2)(x-3)(x+4)=0$.
[NOTE: you DO NOT need to do any calculation for this one; use the factor theorem to find the solution by just looking at the equation.]
Solution: 1 (with multiplicity two), 2, 3 and -4 .
5. Find the possible rational zeros of the following polynomials.
a) $4 x^{3}+5 x^{2}-3 x+6$
b) $6 x^{4}+3 x^{2}+4 x-15$

Solution:

a) $\pm\left\{1,2,3,6, \frac{1}{2}, \frac{1}{4}, \frac{3}{2}, \frac{3}{4}\right\}$
b) $\pm\left\{1,3,5,15, \frac{1}{2}, \frac{1}{3}, \frac{1}{6}, \frac{3}{2}, \frac{5}{2}, \frac{5}{3}, \frac{5}{6}, \frac{15}{2}\right\}$

