MATH 30 - Precalculus. Homework 4. Due We. 03/06/2024. Professor Luis Fernández SOLUTION

DO NOT write your answers here. Do it in other sheets and **show all your work**. **STAPLE this sheet to your other sheets.**

1. Use synthetic division and the remainder theorem to find the indicated function value.

a)
$$f(x) = x^3 - 4x^2 + x + 2$$
; find $f(3)$.
b) $f(x) = -2x^4 - x^2 + x - 2$; find $f(-1)$.
c) $f(x) = x^5 - 4x^2 + 1$; find $f(2)$.
d) $f(x) = -x^4 - 5x^3 - x^2 + 3x + 2$; find $f\left(\frac{1}{2}\right)$.

Solution:

Synthetic divisions skipped. For example, you can use http://www.mathcelebrity.com/syndiv.php to check it.

- a) Answer: f(3) = -4.
 b) Answer: f(-1) = -6.
 c) Answer: f(2) = 17.
 d) Answer: f(1/2) = 41/16.
- 2. Solve the following polynomial equations. (We did several examples in class.)
 - a) $x^3 4x^2 7x + 10 = 0$ b) $3x^3 - 8x^2 - 8x + 8 = 0$ c) $x^4 + 3x^3 - 20x^2 + 24x - 8 = 0$ d) $x^4 - x^3 + 2x^2 - 4x - 8 = 0$ Solution:
- a) The possible rational solutions of $x^3 4x^2 7x + 10 = 0$ are $\pm 1, \pm 2, \pm 5, \pm 10$. Now we do synthetic division to test them. Check that 1 is not a root. However, -1 is:

	1	-4	-7	10	
1			-3		
	1	-3	-10	0	
-2		-2	10		
	1	-5	0	<u> </u>	
5		5			Therefore the solutions are $1, -2$ and 5 .
	1	0			

b) I only write the solutions (proceed as in the previous exercise, or as in exercise 2). They are $\frac{2}{3}$, $1 + \sqrt{5}$, $1 - \sqrt{5}$.

- c) I only write the solutions (proceed as in the previous exercise, or as in exercise 2). They are: 1, 2, $-3 \sqrt{13}$, $-3 + \sqrt{13}$.
- d) I only write the solutions (proceed as in the previous exercise, or as in exercise 2). They are -1, 2, 2i, -2i.
- **3.** Use the results of the previous exercise to factor the following polynomials completely. [NOTE: you DO NOT need to do any calculation, only use the *factor theorem*.]
 - a) $x^3 4x^2 7x + 10$ b) $3x^3 - 8x^2 - 8x + 8$ c) $x^4 + 3x^3 - 20x^2 + 24x - 8$ d) $x^4 - x^3 + 2x^2 - 4x - 8$ Solution:
- a) From the previous exercise, the zeros of $x^3 4x^2 7x + 10$ are 1, -2 and 5. Therefore, $x^3 - 4x^2 - 7x + 10 = (x - 1)(x + 2)(x - 5)$

- b) From the previous exercise, the zeros of $3x^3 8x^2 8x + 8$ are $\frac{2}{3}$, $1 + \sqrt{5}$, $1 \sqrt{5}$. Therefore, $3x^3 - 8x^2 - 8x + 8 = (x - \frac{2}{3})(x - (1 + \sqrt{5}))(x - (1 - \sqrt{5}))$.
- c) From the previous exercise, the zeros of $x^4 + 3x^3 20x^2 + 24x 8$ are 1, 2, $-3 \sqrt{13}$, $-3 + \sqrt{13}$. Therefore, $x^4 + 3x^3 - 20x^2 + 24x - 8 = (x - 1)(x - 2)(x - (-3 - \sqrt{13}))(x - (-3 + \sqrt{13}))$
- d) From the previous exercise, the zeros of $x^4 x^3 + 2x^2 4x 8$ are -1, 2, 2i, -2i. Therefore, $x^4 - x^3 + 2x^2 - 4x - 8 = (x+1)(x-2)(x+2i)(x-2i)$.

4. Solve the equation (x - 1)²(x - 2)(x - 3)(x + 4) = 0.
[NOTE: you DO NOT need to do any calculation for this one; use the *factor theorem* to find the solution by just looking at the equation.]
Solution: 1 (with multiplicity two), 2, 3 and -4.

5. Find the possible rational zeros of the following polynomials.
a) 4x³ + 5x² - 3x + 6
b) 6x⁴ + 3x² + 4x - 15
Solution:
a) ±{1,2,3,6, ¹/₂, ¹/₄, ³/₂, ³/₄}
b) ±{1,3,5,15, ¹/₂, ¹/₃, ¹/₆, ³/₂, ⁵/₅, ⁵/₆, ¹⁵/₂}