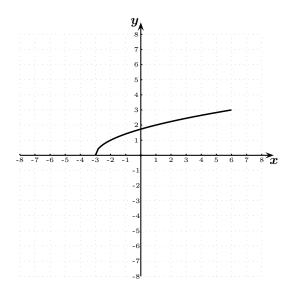
- 1. For the function f(x) = 3x 5, find (and simplify when possible)
 - a) f(3) = 4

- **b)** f(-4) = -17
- c) f(t) = 3t 5

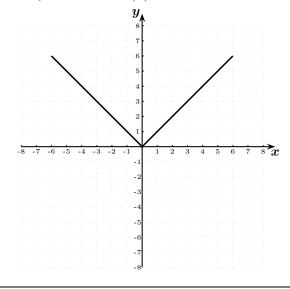
- d) f(x+1) = 3(x+1) 5 = 3x 2
- e) f(-x) = -3x 5 f) $f(x^2) = 3x^2 5$
- **2.** For the function $f(x) = \frac{3x^2 1}{x^2}$, find (and simplify when possible)
 - a) $f(2) = \frac{11}{4}$

- **b)** f(-1) = 2 **c)** $f(r) = \frac{3r^2 1}{r^2}$
- d) $f(x-1) = \frac{3(x-1)^2 1}{(x-1)^2} = \frac{3x^2 6x + 2}{(x-1)^2}$ e) $f(-x) = \frac{3(-x)^2 1}{(-x)^2} = \frac{3x^2 1}{x^2}$ f) $f(x^3) = \frac{3x^6 1}{x^6}$
- 3. Make a table of values (take, for example, the integers between -6 and 6; you may want to use a calculator) and graph the following functions in the axes provided.
- a) $f(x) = \sqrt{x+3}$

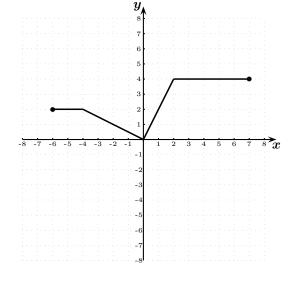


b) g(x) = |x|

(remember that |x| means 'absolute value of x')



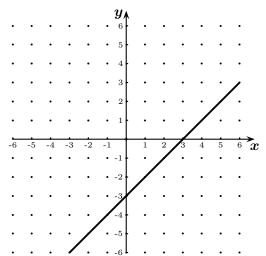
- **4.** Use the given graph of the function g to answer the questions below.
 - **a)** Find g(-2) = 1
- **b)** Find g(0) = 0
- **c)** Find q(1) = 2
- **d)** Find q(-3) = 1.5
- **e)** Find g(4) = 4
- **f)** Find g(7) = 4
- g) Find the domain of g and write it in interval notation. [-6, 7]
- h) Find the range of q and write it in interval notation. [0, 4]

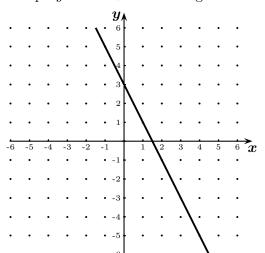


5. Graph the following lines.

Graph y = x - 3 indicating at least two points.

Graph y = -2x + 3 indicating at least two points.



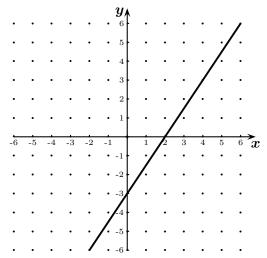


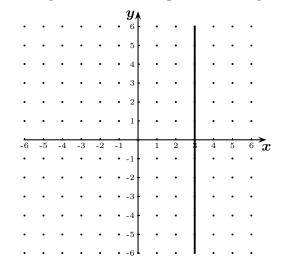
Solution: Two points: (0, -3), (3, 0)

Solution: Two points: (0,3), (1,1)

Graph 3x - 2y = 6 indicating at least two points.

Graph x = 3 indicating at least two points.





Solution: Two points: (2,0), (0,-3)

Solution: Two points: (3, -6), (3, 6)

6. Find the equation of the line passing through the point (1,3) that is parallel to the line with equation 3x + 2y = 5.

If the line we want is parallel to 3x + 2y = 5, it must have the same slope.

To find the slope of 3x+2y=5, solve for y and then the slope will be the coefficient of x: $3x+2y=5 \rightarrow 2y=-3x+5 \rightarrow y=-\frac{3}{2}x+\frac{5}{2}$. Thus the slope (of both lines) is $m=-\frac{3}{2}$.

Therefore the equation of the line we want is $y-3=-\frac{3}{2}(x-1)$ (use point-slope form).

7. Find the equation of the line passing through the point (-1,2) that is perpendicular to the line with equation 3x + 2y = 5.

The slope of the line 3x + 2y = 5 is $m_1 = -\frac{3}{2}$ (done in the previous exercise). The slope of a perpendicular line is the negative, reciprocal, of m_1 . Therefore the slope of the line we want is $m_2 = \frac{2}{3}$, and the equation of the line that we want to find is $y - 2 = \frac{2}{3}(x + 1)$.