Table 1.3 Algebra's Common Graphs

Vertical Shifts

Let f be a function and c a positive real number.

- The graph of y = f(x) + c is the graph of y = f(x) shifted c units vertically upward.
- The graph of y = f(x) c is the graph of y = f(x) shifted c units vertically downward.

Horizontal Shifts

Let f be a function and c a positive real number.

- The graph of y = f(x + c) is the graph of y = f(x) shifted to the left c units.
- The graph of y = f(x c) is the graph of y = f(x) shifted to the right c units.

Reflection about the x-Axis

The graph of y = -f(x) is the graph of y = f(x) reflected about the x-axis.

Reflection about the y-Axis

The graph of y = f(-x) is the graph of y = f(x) reflected about the y-axis.

Vertically Stretching and Shrinking Graphs

Let f be a function and c a positive real number.

- If c > 1, the graph of y = cf(x) is the graph of y = f(x) vertically stretched by multiplying each of its y-coordinates by c.
- If 0 < c < 1, the graph of y = cf(x) is the graph of y = f(x) vertically shrunk by multiplying each of its y-coordinates by c.

Horizontally Stretching and Shrinking Graphs

Let f be a function and c a positive real number.

- If c > 1, the graph of y = f(cx) is the graph of y = f(x) horizontally shrunk by dividing each of its x-coordinates by c.
- If 0 < c < 1, the graph of y = f(cx) is the graph of y = f(x) horizontally stretched by dividing each of its x-coordinates by c.

To Graph:	Draw the Graph of f and:	Changes in the Equation of $y = f(x)$
Vertical shifts		
y = f(x) + c	Raise the graph of f by c units.	c is added to $f(x)$.
y = f(x) - c	Lower the graph of f by c units.	c is subtracted from $f(x)$.
Horizontal shifts		
y = f(x+c)	Shift the graph of f to the left c units.	x is replaced with $x + c$.
y = f(x - c)	Shift the graph of f to the right c units.	x is replaced with $x - c$.
Reflection about the x-axis	Reflect the graph of f about the x -axis.	f(x) is multiplied by -1 .
y = -f(x)		
Reflection about the y-axis	Reflect the graph of f about the y -axis.	x is replaced with $-x$.
y = f(-x)		
Vertical stretching or shrinking		
y = cf(x), c > 1	Multiply each y-coordinate of $y = f(x)$ by c, vertically stretching the graph of f .	f(x) is multiplied by $c, c > 1$.
y = cf(x), 0 < c < 1	Multiply each y-coordinate of $y = f(x)$ by c, vertically shrinking the graph of f .	f(x) is multiplied by $c, 0 < c < 1$.
Horizontal stretching or shrinking		
y = f(cx), c > 1	Divide each x-coordinate of $y = f(x)$ by c, horizontally shrinking the graph of f .	x is replaced with cx , $c > 1$.
y = f(cx), 0 < c < 1	Divide each x-coordinate of $y = f(x)$ by c, horizontally stretching the graph of f .	x is replaced with cx , $0 < c < 1$.